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Lecture 1: Overview of probability and

statistics



Motivation I
Your motivation, not really mine

* We are physicists — why are we discussing statistics?
* Abstract for the Higgs discovery (Aad et al. 2012b):

This observation, which has a significance of 5.9
standard deviations, corresponding to a background
fluctuation probability of 1.7× 10−9, is compatible
with the production and decay of the Standard
Model Higgs boson

* If we want to infer information from an experiment, we must
use statistics. Typically, we want to reject explanations for
observations, e.g., the SM without a Higgs boson is rejected



Motivation II
Your motivation, not really mine

* Statistics is critical to LHC experiments, because we have
counting experiments.

* If we expected 100 events from backgrounds and saw 110,
what does it mean? Is there a signal?

* That isn’t the only source of uncertainties, though
* Historical note: statistical methodologies applied in

mid-nineties at LEP and Tevatron
* The discovery of the W -boson in 1983 did not mention e.g.,

5σ or any significance (Arnison et al. 1983) (low backgrounds)

In summary, you should learn statistics because you want to be able
to justify conclusions from an experiment, e.g., we’ve discovered a
Higgs boson



Motivation
My motivation, probably not yours

* Hopefully, as well as showing you how to calculate things, I
can hint that statistics is more than a tool in science

* Scientific methods, choosing between theories etc , are linked
to statistics

* That is, statistics isn’t a tool in science; science is, in a way,
built on statistics

This sounds quite grand; now we must get back down to Earth with
some introductory material



Reading
I like these books:
* James, F. (2006). Statistical methods in experimental physics

(Second). World Scientific — frequentist, calculations
* Jaynes, E. T. (2003). Probability Theory: The Logic of

Science. (G. L. Bretthorst, Ed.). Cambridge University Press
— Bayesian, interpretations

* Lyons, L. [L.]. (1989). Statistics for nuclear and particle
physicists. Cambridge University Press — frequentist,
calculations

Unfortunately, since mid-nineties, particle physics used arcane test
statistics, e.g., CLs, that aren’t in text books



Probability
What is it?

We will later distinguish between probability and statistics, but we
will need ideas about both (Hájek 2012):

1. Bayesian: degree of belief in a proposition? Chelsea will
probably win the European cup. Probability stems from our
ignorance.

2. Quasi-logical: if the sun is shining, it’s probably hot
3. Physical: the frequency or propensity with which a physical

system exhibits a particular behavior



Physical probability
Does physical probability exist?

* My opinion: most probability is Bayesian, e.g., a coin toss is
“random” because we are ignorant of its initial conditions

* Repeated trials tell us something about how those initial
conditions vary between trials (Jaynes 2003)

* Physical probabilities in quantum mechanics and QFT



Probability
Which one do we need?

For the purposes of calculating things for experimental physics, we
need physical probability. In particular we need frequentist
probability:

Probability is the frequency with which an
outcome occurs in repeated trials:

P = lim
n→∞

k

n
(1)

* Almost all statistics in collider physics is frequentist
* “Let the data speak for themselves” (Fisher)



Obvious objections to

Frequentism

* If trials are identical, won’t outcomes be identical? Not if
physical probability

* Can we make identical trials? No but can control relevant
factors

* Can we realize infinite limit? No but we make enough trials
* What about events that can’t be repeated? They don’t have

probabilities



Frequentism
Something to remember

Keep in mind that if we are doing frequentist statistics:
* Probability, and many of our statements, concern hypothetical

experiments that we haven’t performed
* Foreshadowing our later calculations, we will often say, e.g., if

we repeated this experiment many times, we’d get a result like
this one less than 5% of the time

* We’re finding properties of our experiment; not properties of
any underlying physical theory. Some people call this “in the
data”

I will highlight this later



Axioms
Kolmogorov’s axioms and some basics

* If events Xi are exclusive, probabilities must satisfy

P (Ω) = 1

P (Xi) ≥ 0

P (Xi or Xj) = P (Xi) + P (Xj)

(2)

* You can find justification for Kolmogorov’s axioms with
“Dutch-book arguments”

* If you don’t follow Kolmogorov, you’ll lose money
* Do we have to define probability with recourse to money? Isn’t

it a fundamental branch of mathematics?



Important formulas

* If events are not exclusive, it follows that

P (Xi or Xj) = P (Xi) + P (Xj)− P (Xi and Xj) (3)

Think of a Venn diagram
* We also want conditional probability:

P (Xi given Xj) ≡ P (Xi|Xj) ≡
P (Xi and Xj)

P (Xj)
(4)

This formula is also known as Bayes’ theorem
* As mathematics, it’s trivial, but if it comes along with

Bayesian interpretations of probability, it’s contentious



Distributions

* A random event is an event with more than one possible
outcome

* Possible outcome is a random variable
* Probability of various outcomes given by probability

distribution
* If I roll 100 coins, discrete random variable could be the

number of heads (binomial distribution)
* Another discrete random variable is the number of fatalities by

horse kicking in the Prussian army (Poisson distribution)



Distributions I
Continuous random variables

* We mentioned discrete random variables; what about
continuous?

* We need a probability density function (PDF):

p(x) = lim
∆x→0

P (x− 1
2∆x < X < x+ 1

2∆x)

∆x
(5)

* I denote densities with lower-case p and probabilities with
upper-case P

* Example: errors in an experiment (Gaussian). I’ll return to this
* This is density with unit [1/x]

* P (a < X < b) =
∫ b
a p(x) dx



Distributions II
Continuous random variables

* It has a cumulative density function (CDF)

F (x) =

∫ x

−∞
p(x′) dx′ (6)

* Non-trivial changes of variables with a Jacobian, J

p(x) dx = p(y = f(x)) dy ⇒ p(y) =
∑ p(x)

|J |
(7)

* Density could describe several continuous random variables, in
which case

p(x) =

∫
p(x, y) dy (8)



Distributions III
Continuous random variables

* This is called marginalization. It is useful for eliminating
“nuisance” parameters, such as systematics

* But, as you’ll see, there is a another more common way



Properties of

distributions
Expectation

* E(g) =
∫

Ω g(x)p(x) dx

* Linear: E(ag(x) + bh(x)) = aE(g(x)) + bE(h(x))

* µ = E(x) is called the mean. The mean isn’t always
well-defined (Cauchy distribution), but it usually is

* σ2 = E((x− µ)2) = E(x2)− E(x)2 is called the variance, σ
is called the standard deviation

* From this definition, no connection between σ and probability
content

* Mean gives location, whereas standard deviation gives spread



Properties I
Sample mean

* Suppose we make N random samples from a distribution. We
may calculate the sample mean (continuous random variable):

x̄ =
1

N

∑
xi (9)

* Expectation of the mean: E(x̄) = 1
N

∑
E(xi) = 1

NNµ = µ



Properties II
Sample mean

* Variance of the mean:

E(x̄2)− E(x̄)2 =
1

N2
E(
∑

xi
∑

xi)−
1

N2
E(
∑

xi)
2

=
1

N2

[∑
E(x2

i )−
∑

E(xi)
2
]

+
1

N2

[∑
E(xixj)−

∑
E(xi)(E(xj)

]
=

1

N

[
E(x2

i )− E(xi)
2
]

=
1

N
σ2

(10)

* Because samples are independent, so the covariance vanished
* Demonstrates well-known result: standard deviation of sample

mean is σ/
√
N



Properties
Sample variance

Sample variance (continuous random variable):

s2 =
1

N

∑
(xi − x̄)2 (11)

* We’ve already calculated that E(s2) = σ2/N — check this if
it is not obvious

* What about variance of sample variance E(s2)2 − E((s2)2)?
* This is something like the error on the error. Calculation is

technical, but result is that ∝ 1/N , so the error on the error is
∝ 1/

√
N

* This is the origin of a rule of thumb for quoting errors in
experiments



Quoting results
My rules

* Quote the sample standard deviation and sample mean to the
same number of decimal places, for example

x̄± s = 1.0± 0.1 (12)

* How many significant figures for the error? If you have & 100
samples, two significant figures, & 104 three significant figures,
etc

* This originates from fact that error on error ∝ 1/
√
N



Examples I
Binomial distribution

* Discrete distribution for repeated trials with two possible
outcomes

* Probability of k outcomes with probability p in n trials:

Pk =

(
n

k

)
pk(1− p)n−k (13)



Examples II
Binomial distribution

Figure : Binomial distribution for various n and p (wiki)

* For example, tossing a coin
* Expectation 〈k〉 = np



Examples III
Binomial distribution

* Variance σ2 = np(1− p)



Examples I
Poisson distribution

* Discrete distribution present in every counting experiment
* Know expected number of “events”, λ, in a particular interval,

T

* Probability distribution of seeing k events in that interval?
Begin with binomial

Pk =

(
n

k

)
pk(1− p)n−k (14)



Examples II
Poisson distribution

Figure : Poisson distribution for various λ (wiki)



Examples III
Poisson distribution

* Discretize time-interval, such n = T/∆t that p ≈ λ∆t/T ,
such that 〈k〉 = np = λ:

Pk =
(T/∆t)!

k!(T/∆t− k)!
(λ∆t/T )k(1−λ∆t/T )T/∆t(1−λ∆t/T )−k

(15)
* Let n = T/∆t→∞ (note that (1−a/x)x → e−a as x→∞):

Pk →
(T/∆t)!

k!(T/∆t− k)!
(λ∆t/T )ke−λ(1− λ∆t/T )−k

=
λk

k!
e−λ × (T/∆t)!

(T/∆t− k)!
(∆t/T )k

→ λk

k!
e−λ

(16)



Examples IV
Poisson distribution

* Expectation 〈k〉 = λ

* Variance σ2 = λ



Normal distribution I
Normal/Gaussian/bell curve distribution

* Continuous distribution, defined for all reals
* Common notation N (µ, σ2) — normal distribution with

expectation (and mode and median) µ and variance σ2

p(x) =
1√

2πσ2
e−(x−µ)2/2σ2

(17)



Normal distribution II
Normal/Gaussian/bell curve distribution

Figure : Normal distribution for various µ and σ (wiki)

* Numbers of standard deviation corresponds to cumulative
probabilities (careful about one- or two-tail)



Normal distribution III
Normal/Gaussian/bell curve distribution

Figure : Probability under normal distribution (wiki)



Normal distribution I
Why is this distribution ubiquitous?

* The normal distribution is “natural” — other distributions
gravitate towards it!

* If n is great, binomial distribution approximately
N (np, np(1− p))

* If λ & 103, Poisson distribution approximately N (λ, λ)

* Central limit theorem: average of large number n of random
variables is approximately N (µ, σ2/n)

* Errors are assumed to be Gaussian, not because we know their
distribution, but because this is conservative

* Gaussian is “maximum entropy” distribution — most
conservative possible for errors, if we know mean and variance



χ2-distribution I
If xi are normally distributed random variables, then
* λ =

∑n
i=1(xi − µ)2/σ2 is χ2-distributed

p(λ;n) =
1

2

(
λ

2

)n/2−1

e−X/2/Γ(n/2) (18)



χ2-distribution II

Figure : χ2-distribution for various degrees of

freedom (wiki)

* Expectation 〈λ〉 = n

* Variance σ2 = 2n



χ2-distribution III
* n is called the number of degrees of freedom
* This is a common distribution because χ2 is a common

test-statistic and because of Wilk’s theorem (forthcoming)



Likelihood function
Suppose we perform an experiment and obtain data D
* The probability of obtaining that data, assuming a particular

theory H and various parameters in that theory ~λ, given by
likelihood:

L = p(D|H,~λ) (19)

* As a function of D, this is a sampling distribution
* As a function of ~λ, this is not a distribution
* We (almost always) draw conclusions from likelihood functions

— estimate a parameter, confidence interval or a test a
hypothesis

* We often, however, first construct a test-statistic from the
likelihood



Point estimator

* A physicist might say “measurement”, but in a statistical
language, this is an “estimate”

* A point estimate is an estimate of the value of parameter from
a finite number of experiments

* Of course, a point estimate should be “as close as possible” to
the true value (but we don’t know the true value)

* An estimator is a function or method for making an estimate
from experimental data

* An estimator is a random variable (with a distribution)



Estimators I
Desirable properties

Estimator λ̂ for a parameter λ should:
* Consistent — λ̂→ λ as more and more data collected
* Unbiased — E(λ̂) = λ, expected to give the correct answer
* Invariant — f̂(λ) = f(λ̂)

* Maximum information — no other number could summarize
parameter with more information

* Minimum variance — if small variance, more certain that
estimate is close to true value



Estimators II
Desirable properties

Figure : Example of bias and consistency (James

2006). Distribution of estimator. N is number of

observations (arrow is increasing N) and θ0 is true

value



Estimators III
Desirable properties

Estimator should also be practical:
* Simple to present and explain
* Minimal computer/physicist’s time
* Robustness — minimal sensitivity to assumptions about e.g.,

likelihood function



Point estimator I
Maximum likelihood Estimator (MLE)

A common estimator in collider physics is the MLE
* λ̂ such that

L = p(D|H,λ . . .) (20)

is maximized
* Note that maximizing L is equivalent to minimizing − lnL

(logarithm monotonic)
* If there are other parameters (e.g., nuisance parameters related

to systematics or model par meters), we maximize the
likelihood with respect to them all

* i.e., we find global maximum
* This is sometimes called profiling



Point estimator II
Maximum likelihood Estimator (MLE)

* This is asymptotically consistent, unbiased and minimum
variance (this is a little technical, see (James 2006))

* Practical — easy to present and understand
* Calculated by minimizing − lnL, usually numerically
* MLE is used to determine, e.g., Higgs mass at LHC



Point estimator III
Maximum likelihood Estimator (MLE)

Figure : MLE estimates of the Higgs mass (Chatrchyan

et al. 2014)



Other estimators I
There is a lot of theory about estimators. Here are a few remarks:
* In collider physics, MLE is very common
* There are only a few technical cases in which it is a poor choice
* Remember that maximizing probability of data given

parameter 6= maximizing probability of parameter given theory
* Alternatives, from Bayesian side, (posterior) mean, mode or

median
* But in Bayesian perspective, result is distribution — estimate

is a summary
* From frequentist side, e.g., least squares

Estimate parameters with MLE, but keep in mind it isn’t the only
possibility



Exercises I

The starred exercises are trickier or probably require a computer.
Focus on the unstarred exercises, but think about how you might
tackle the starred exercises. Write down expressions even if you
cannot numerically evaluate them without a computer.

Please complete all exercises by next week.

Expectations and general probability — seeing numbers:

1. Expected number of dice rolls if I stop rolling once I roll a six?
*2. Expected number of dice rolls if I stop rolling once I roll all

numbers on dice?



Exercises II
Conditional probability — a foolish prisoner’s dilemma:

3. Guard tells 3 prisoners (Alan, Bob and Colin) he has randomly
chosen 2 to release tomorrow. Alan pesters the guard for more
information. The guard refuses to tell Alan whether he will be
released, but tells him that Bob will be released. Alan is upset;
he reasons that his chance to be released was 2/3, but has
fallen to 1/2 because he and Colin have an equal chance of
release. Correct Alan’s reasoning.

Trial by binomial distribution:

*4. Consider two juries (variant of Newton-Pepys problem):



Exercises III
* Seven votes from 10 are required to convict. Each juror

decides to vote guilty with probability p = 0.7.
* Seventy votes from 100 are required to convict. Each

juror decides to vote guilty with probability p = 0.7.
Which jury is most likely to reach a guilty verdict?

Poisson paradox:

5. Poisson should be probability for rare, independent events. If
probability of one event is p, should the probability for 2 events
be p2?

6. Show that it is in fact ≈ p2/2.
7. Justify the factor of 1/2.



Exercises IV
Is there a typo?

*8. I make on average 2 typos per slide. What is the probability
that there is at least one typo on this slide?

Switching between distributions:

9. If x is distributed uniformly on [0, 1], find y = f(x) such that
y ∼ N(µ, σ).

10. What is the distribution of y = F (x), where F the CDF
corresponding to the distribution of x?

The sample mean:



Exercises V
*11. Is the sample mean consistent?

*12. Is the sample mean biased?
13. Is the sample mean invariant?

Sample variance:

14. Show that if xi are uncorrelated,

V (
∑

aixi) =
∑

a2
iV (xi) (21)

where V (Z) = E(Z)2 − E(Z2), i.e., the variance, and in this
case Z =

∑
aixi

Discovering the significance of 5σ discovery significance



Exercises VI
15. We will discuss hypothesis testing in our next lecture.

Physicists like 5σ significance — a confidence equal to the
probability under a normal distribution at x > 5σ (one-tail).
Look up this probability.

16. Is it small enough to convince you?

Maximum likelihood distributions:

17. Our experiment measures a random variable, x, that we
believe has an exponential distribution

p(x) =
1

τ
e−t/τ . (22)

We make n measurements of t, t1, · · · , tn. Write down the
likelihood function.



Exercises VII
18. Find the MLE for the parameter τ .



Lecture 2: Confidence intervals and

hypothesis testing for experimental

particle physicists



Confidence intervals I
or interval estimation

* We discussed point estimation and the MLE
* But what if we perform an experiment, and want to present an

interval
xl ≤ x ≤ xu (23)

that we believe contains the true parameter?
* This is very common — for example, we might want an

interval or a limit (one-sided interval) for the photon mass or
Higgs mass

* We might desire:
* Parameterization invariance
* Pragmatic — easy to calculate and explain



Confidence intervals II
or interval estimation

* In frequentist statistics, we define such intervals by their
coverage:

If experiment repeated many times, the interval
estimated at β confidence will contain the true value
of a parameter in a fraction β of experiments

* This is an important point: interval estimates are constructed
in the data — they are properties of hypothetical
pseudo-experiments

* β = 68% and 95% common and referred to as 1σ and 2σ (as
this is probability under normal distribution)

* The ends of a confidence interval are random variables



Confidence intervals III
or interval estimation

Figure : The bars represent interval estimates in

independent experiments and µ is the true value of the

parameter. In 95% cases, the interval (the bar) contains the

true value µ (wiki)



Example: Neyman

construction I

* Let’s estimate a parameter θ from data t′ at confidence β
* Let’s begin by constructing a statement in the data:

β =

∫ tu

tl

p(t|θ) dt (24)

* Immediate problem: multiple ways to pick tl and tu — they
are not unique

* We must pick an ordering rule (this specifies the order in
which area under PDF should be included)



Example: Neyman

construction II
* Let’s pick symmetric ordering rule:

(1− β)/2 =

∫ tl

−∞
p(t|θ) dt =

∫ ∞
tu

p(t|θ) dt (25)

* Solve for interval as function of θ: tl = tl(θ) and tu = tu(θ)

* We must invert this solution to obtain an confidence interval
for θ

* We invert by solving t′ = tl(θl) and t′ = tu(θu) to obtain an
interval (θl, θu)

* Because interval (tl, tu) has correct coverage for data, (θl, θu)
has correct coverage for true parameter



Example: Neyman

construction III

Figure : Constructing a Neyman interval via a confidence

belt (James 2006). The inversion from data to theory is

found by reading the interval vertically



Flip-flopping

* Flip-flopping: we remarked that we had to pick an ordering rule
* But sometimes, we don’t know in advance whether we want to

report an upper limit or an interval
* For example, if we’re measuring something we think is zero

(e.g., photon mass), if we get something close to zero, we
want to report an upper limit

* But if we get something much bigger than zero, we might
want to report an interval

* This is called/leads to the problem of flip-flopping (incorrect
coverage)



Nonphysical values in the

interval estimate

* What if our interval includes nonphysical values?
* For example, what if we end up with a negative interval for

photon mass?
* We could forbid it, but then we’d have an empty region?
* This is clearly bad news for Neyman construction



Unified approach
AKA Feldman-Cousins

* Addresses the problems with Neyman’s construction
concerning an ordering rule/nonphysical values

* Feldman-Cousins:

Ordering rule is that you should include µ within the
physical region with the largest values of

R(µ) =
p(d|µ)

p(d|µ̂)
(26)

until the required confidence is reached

* This isn’t a priori one or two-tailed — it could be either!



Profile likelihood I

* Similar to Feldman-Cousins construction
* Calculate log-likelihood ratio test statistic:

λ(µ) = −2 ln
p(d|µ, ˆ̂ν)

p(d|µ̂, ν̂)
(27)

* We have profiled a nuisance parameter ν
* This is a random variable
* By Wilk’s theorem, it is often approximately χ2-distributed

λ(µ) ∼ χ2
1 (28)

* Exclude λ(µ) from interval if

P (λ > λ(µ)) < 1− β (29)



Profile likelihood II
* This clearly has desired coverage
* This is a very common method in high-energy physics because

it’s easy to include nuisance parameters



Profile likelihood III
Figure : If area in tail beyond λ(µ) less than critical value,

don’t include µ in interval

Figure : The “intervals” found from profile likelihood might

not be contiguous



CLs upper limits I

* Particle physicists invented their own method for presenting
upper limits in counting experiments

* Suppose we expect s(µ) + b events in signal hypothesis and b
in background hypothesis, with unknown parameter µ

* We observe o events
* Calculate CLs statistic

CLs(µ) =
CLs+b
CLb

=
P (λ > λ(µ))|s(µ) + b)

P (λ > λ(0)|b)
(30)

* If CLs(µ) < 1− β, don’t include µ in interval
* This over-covers — includes true value more often than it

should (conservative)



CLs upper limits II
* It designed to eliminate cases in which downward fluctuations

in background cause signals to be excluded
* For example, if you expect b = 10 but observe o = 1. You can

exclude even very small signals with profile likelihood. Many
people don’t like this, so use CLs

* CLs is on shaky theoretical foundations, but it is very
commonly used



Hypothesis testing and

goodness of fit

* We’ve used experimental data to estimate parameters and
intervals

* But what about testing hypothesis? How do we reject theories
with data?

* How do we find whether a particular theory is favored by data?
* With this sort of methodology, we’re always trying to reject

models (rather than confirm them)



What is a hypothesis

* A hypothesis specifies a PDF for the outcome of an experiment
* A simple hypothesis is a hypothesis with no adjustable

parameters
* A composite hypothesis involves free parameters — this is an

(infinite) ensemble of simple hypotheses



Hypothesis test
In frequentist statistics,

Hypothesis is rejected at β confidence, if, were the
experiment repeated and the hypothesis was true, we’d
obtain such “extreme” data in only a fraction 1− β of the
experiments

* This is not a statement about the probability of the theory
* Statement about probability of obtaining such “extreme” data
* The extremity of the data is formulated with a test statistic



Possible errors
With this definition, we are susceptible to errors:
* Error of first kind (Type-1 error): Reject hypothesis when it is

true
* Error of second kind (Type-2 error): Accept hypothesis when it

is false

Figure : Example of type-1 and type-2 errors in hypothesis

testing.



Test-statistic and

p-values I

* As mentioned, the extremity of the data is formulated with a
test statistic

* A test statistic is a function of experimental data
* It is a random variable



Test-statistic and

p-values II
* We may extend our previous definition of hypothesis testing:

The probability of obtaining a test-statistic larger
than that obtained is called the p-value:

p-value = P (λ > λ(observed)|H0) (31)

If p-value < 1− β, reject H0 at β confidence



Test-statistic and

p-values III

Figure : p-value is the probability in the right-hand tail of

test-statistic distribution. If that probability is less than a

threshold, reject the hypothesis



Significance and

p-values I

* For historic reasons, it is common in high-energy physics to
convert p-values into so-called significances

* That this, the number of deviations that make the same
probability in the right-hand tail of a Gaussian

p-value =

∫ Z

−∞
Gauss(x;µ = 0, σ2 = 1) dx (32)

* High-energy physicists like 5σ significance — which
corresponds to a very small p-value

* This minimizes type-1 errors



Significance and

p-values II

Figure : Illustration of meaning of 5σ significance for

Higgs discovery



Choice of test-statistic

I
We’ve introduced the idea of test-statistic, but we haven’t picked
one
* It should be consistent — in the limit of large data, it should

distinguish correctly between theories
* It shouldn’t be biased — e.g., the probability that we accept a

hypothesis if it’s false should be less than the probability that
we accept it if it’s true

* There is a trade-off between type-1 and type-2 errors.
Decreasing type-1 errors increases type-2 errors

* What’s the “best” test-statistic that for a given confidence
level, minimizes type-2 errors?



Choice of test-statistic

II
* It can be proved that the Neyman-Pearson test-statistic is

optimal:

λ =
p(d|H0)

p(d|H1)
(33)

if we are comparing simple hypotheses H0 and H1



Composite hypothesis I

* What about composite hypotheses? Previous result doesn’t
apply?

* Although it isn’t proven to be optimal, we pick a likelihood
ratio, and profile the models’ free parameters

λ =
p(d|x̂, H0)

p(d|ŷ, H1)
(34)

* This is also pragmatic
* If the models are nested (such as a model with Higgs that

reduces to a model without a Higgs if the coupling is switched
off), we can use Wilk’s theorem to find the distribution of lnλ

* Wilk’s theorem −2 lnλ ∼ χ2-distribution
* Distribution of test-statistic also often found by Monte-Carlo



Back to the

beginning. . .

This observation, which has a significance of 5.9 standard
deviations, corresponding to a background fluctuation
probability of 1.7× 10−9, is compatible with the
production and decay of the Standard Model Higgs boson

* This statement should now be more clear
* Probability of obtaining such a large test-statistic (such

extreme data) under null hypothesis is 1.7× 10−9

* With a one-tail Gaussian convention, the significance of that is
5.9σ



Look-elsewhere effect

(LEE) I

* If we modify our choice/calculation of test statistic after
seeing the data, we alter the distribution of the test statistic

* We are often biased — try to maximize the significance of
experimental anomalies. We might:
* Pick data that maximizes the significance. LEE in the

data
* Pick a test statistic (e.g., pick a particular mh) that

maximizes the significance. LEE in the theory
* As a consequence, we find a small p-value

* These are local significance’s. Nothing wrong with this, as
long as you are honest



Look-elsewhere effect

(LEE) II
* The global significance reflects the whole procedure —

including the fact that you looked at the most significant
experiment or test statistic.

* The p-value is always the probability of observing such an
extreme test statistic in the null hypothesis

* With local p-values, you are not including all information
about the calculation of the test statistic



Look-elsewhere effect

(LEE) I
In the data

* I sample one hundred numbers from a black box that I’m told
is a standard normal distribution

* I look through my data find one number in 99% tail — I
report this, and reject the idea that black box is a standard
normal distribution at 99% confidence

* This is madness! I expected to find such a discrepant result in
100 samples. That was a local significance for that particular
sample

* I didn’t include all information about how my data was chosen



Look-elsewhere effect

(LEE) II
In the data

* I should report the global p-value (by e.g., calculating a χ2

and comparing it with a χ2-distribution with 100 degrees of
freedom)



Look-elsewhere effect

(LEE) I
In the theory

* My test statistic is

λ(mh) = ln
L(D|mh, µ = 1)

L(D|µ = 0)
(35)

* I haven’t specified the Higgs mass
* After seeing the data, I look at m′h ≡ m̂h, which is such that

λ(m̂h) is a maximum. I then forget about how m′h was chosen
* I report the p-value associated with λ(m′h) (without including

how m′h was chosen)



Look-elsewhere effect

(LEE) II
In the theory

* This is a local p-value — it didn’t include all information
about how test-statistic was chosen

* In hypothetical pseudo-experiments, we would have looked at
different λ(mh)

* The test statistic was in effect:

λ̂ = max
mh

λ(mh) = λ(m̂h) (36)

* Although λ̂ = λ(m̂h) = λ(m′h), they don’t have the same
distribution in hypothetical pseudo-experiments and thus don’t
correspond to the same p-value



Look-elsewhere effect

(LEE) III
In the theory

* m̂h would vary in pseudo-experiments; m′h wouldn’t

* λ̂ and its distribution give the global p-value, and reflect all
information about how test-statistic was chosen



Exercises I

The starred exercises are trickier or probably require a computer.
Focus on the unstarred exercises, but think about how you might
tackle the starred exercises. Write down expressions even if you
cannot numerically evaluate them without a computer.

Please complete all exercises by next week.

Confident about confidence intervals

1. John hears that the Higgs mass is between 124 GeV and 127
GeV with 95% confidence. “Wow! They know with 95%
probability that the mass of the Higgs is between those
numbers!”, he exclaims. Correct his mistake.



Exercises II
2. Which interval is wider? a 68% interval? or a 95% interval?
3. Are confidence intervals parameterization invariant? i.e., if

y = f(x) is fu = f(xu)?

Tedious example. The lifetime of light-bulbs is known to be
approximately normally distributed with σ = 0.1 years but unknown
mean, µ. A random sample of four bulbs last 1.14, 0.963, 0.958
and 1.12 years.

4. Write down the expression for the log-likelihood ratio
test-statistic

5. Calculate the MLE for the mean life-time of a bulb



Exercises III
*6. Compute the 68% confidence interval on the mean using the

profile likelihood method. You are encouraged to use a
computer

Error checking (all fictional)

7. The probability distribution of blood alcohol level reported by
a police breathalyzer is N (x+ 0.1, 0.12), where x is the
amount of alcohol consumed. The police stop Fred in a
random check for drink driving. Their threshold for arrest is
0.3. He hasn’t been drinking (x = 0). What is the probability
that he is arrested?

8. The police stop Graham. He has been drinking, x = 2. What
is the probability that he isn’t arrested?



Exercises IV
9. Explain the previous answers in terms of type-1 and type-2

errors in hypothesis testing, include a sketch of the areas under
the PDFs.

Quick hypothesis test

10. A manufacturer claims that the mass of flour in a bag is
normally distributed with µ = 100 g, σ = 10 g. I randomly
buy a bag a flour and find that it contains only 50 g.

11. What’s the probability of obtaining such extreme data, if the
manufacturer’s claims are true?

12. Should we reject the claims at 3σ?



Exercises V
Higgs testing

13. Check that 1.7× 10−9 corresponds to 5.9σ, as claimed
14. Read the statistical procedure in Aad, G. et al. (2012a).

Combined search for the Standard Model Higgs boson in pp
collisions at

√
s = 7 TeV with the ATLAS detector.

Phys.Rev. D86, 032003. doi:10.1103/PhysRevD.86.032003.
arXiv: 1207.0319 [hep-ex]. Write a brief (a few sentences)
summary.

Why 5σ?

http://dx.doi.org/10.1103/PhysRevD.86.032003
http://arxiv.org/abs/1207.0319


Exercises VI
15. Read Lyons, L. [Louis]. (2013). Discovering the Significance of

5 sigma. arXiv: 1310.1284 [physics.data-an]. Write a
brief (a few sentences) summary.

http://arxiv.org/abs/1310.1284
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