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1 What follows is an an excerpt from ref. [1].

The Poisson distribution is usually derived as a limiting “low counting rate” approximation
to the binomial distribution, but it is instructive to derive it by using probability theory as
logic, directly from the statement of independence of different time intervals, using only
the primitive product and sum rules. Thus define the prior information:

I ≡ There is a positive real number λ such that, given λ, the prob-
ability that an event A, or count, will occur in the time inter-
val (t, t + dt) is P (A | λI) = λdt. Furthermore, knowledge of λ
makes any information Q about the occurrence or nonoccurrence
of the event in any other time interval irrelevant to this probability:
P (A |QλI) = P (A | λI).

(1)

In orthodox statistics one would not want to say it this way, but instead would claim that
λ is the sole causative agent present; the occurrence of the event in any other time interval
exerts no physical influence on what happens in the interval dt. Our statement is very
different. Denote by h(t) the probability there is no count in the time interval (0, t). Now
the proposition:

R ≡ No count in (0, t + dt) (2)

is the conjunction of the two propositions:

R = No count in (0, t) ·No count in (t, t + dt) (3)

and so, by the independence of different time intervals, the product rule gives:

h(t + dt) = h(t) · [1− λdt] (4)
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or ∂h/∂t + λh(t) = 0. The solution, with the evident initial condition h(0) = 1, is

h(t) = e−λt. (5)

Now consider the probability, given A and I, of the proposition

B ≡ In the interval (0, t) there are exactly n counts, which happen at the times
(t1, · · · , tn) within tolerances (dt1, · · · , dtn), where 0 < t1 < · · · < tn < t.

This is the conjunction of (2n + 1) propositions:

B = No count in (0, t1) ·Count in dt1·
No count in (t1, t2) ·Count in dt2·
· · ·
No count in (tn−1, tn) ·Count in dtn·
No count in (tn, t)

(6)

so by the product rule and the independence of different time intervals, the probability of
this is the product of all their separate probabilities:

P (B | λtI) = e−λt1 · λdt1·
e−λ(t2−t1) · λdt2·
· · ·
e−λ(tn−tn−1) · λdtn·
e−λ(t−tn)

(7)

or, writing the proposition B now more explicitly as B = dt1 · · · dtn,

P (dt1 · · · dtn | λtI) = e−λtλndt1 · · · dtn, (0 < t1 < · · · < tn < t) (8)

Then what is the probability, given λ, that in the interval (0, t) there are exactly n counts,
whatever the times? Since different choices of the count times represent mutually exclusive
propositions, the continuous form of the sum rule applies:

P (n | λtI) =
∫ t

0
dtn · · ·

∫ t3

0
dt2

∫ t2

0
dt1e−λtλn (9)

or,

P (n | λtI) = e−λt (λt)n

n!
(10)

the usual Poisson distribution. Without the time ordering in our definition of B, different
choices of count times would not all be mutually exclusive events, so the sum rule would
not apply in the above way.
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As noted, conventional theory obtains this same formula from the premise that events
in disjoint time intervals exert no physical influences on each other; the only causative
agent operating is λ. Some authors have turned this around, and supposed that if we
verify Eq. 10 in the frequency sense, that proves that the events were indeed causally
independent!

This is an astonishing conclusion, when we note that one could design a hundred
different mechanisms (or write a hundred different computer programs), which in various
ways that are completely deterministic, generate the seemingly “random” data. That is,
the time of the next event is completely determined by the times of the previous events by
some complicated rule. Yet all of them could constrain the long-run frequencies to agree
with Eq. 10 without showing any signs of correlations.
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