Nested sampling for frequentist computation

Andrew Fowlie, Sebastian Hoof, and Will Handley (May 2021). In: arXiv: 2105.13923 [physics.data-an]

Andrew Fowlie 29 July 2021

Nanjing Normal University

Overview

- 1. What is a *p*-value?
- 2. How to compute small *p*?
- 3. Nested sampling
- 4. Results

What is a p-value?

P-values

We can say a lot about *p*-values. Some good (Cousins 2018; Lakens 2021), some bad (Fowlie 2021; Wagenmakers 2007). Here I give only some facts.

P-value

The *p*-value, *p*, is the probability of observing data as or more extreme than that observed, given the null hypothesis, H_0 , i.e.,

$$p = P(\lambda \ge \lambda_{Observed} \mid H_0)$$

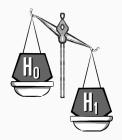
where λ is a test-statistic that summarises the data and defines extremeness.

P-values in high-energy physics

In high-energy physics, we want to discover new phenomena and new particles. Perform null hypothesis test:

- H₀ Standard Model (SM) backgrounds only
- $H_1 SM$ + new physics, e.g. Higgs boson or supersymmetric particles

P-values in high-energy physics



For a discovery we conventionally require a tiny global p-value of

$$p\lesssim 10^{-7}\,(5\sigma)$$

i.e., $\alpha \simeq 10^{-7}$ (Lyons 2013). In high-energy physics, we need to compute tiny *p*-values.

Threshold in evidence — extraordinary claims require extraordinary evidence — and imposes a 10^{-7} type-1 error rate.

Choice of test statistic

Conventionally based on profiled likelihood ratio

$$\lambda = \frac{p(\mathbf{x} \mid \hat{\mathbf{\Theta}}_1, H_1)}{p(\mathbf{x} \mid \hat{\mathbf{\Theta}}_0, H_0)}$$

where $\hat{\Theta}_0$ are the best-fit parameters under H_0 etc and \mathbf{x} are the data.

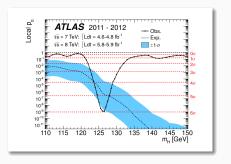
Optimal in simple cases (Neyman-Pearson lemma) and some slightly non-simple cases (Karlin-Rubin theorem).

Won't dwell on choice of test-statistic in this talk or how to compute it from a given dataset, which could involve multi-dimensional optimisation.

Take it as a given.

Higgs discovery

Classic example. Higgs discovery in 2012 (Aad et al. 2012).



Wait until reach 5σ global. We need to compute tiny *p*-values.

How to compute small *p*?

Illustrate problem with two-dimensional data, **x**.



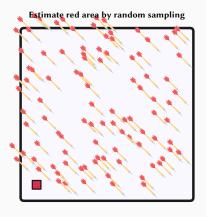
In reality, red region exponentially tiny. Illustrate with squares but assume nothing about geometry/topology in problem or solution.

Sample from whole sample space — Monte Carlo

Draw n samples from whole sampling distribution. Estimate p by fraction of them that fall in red region

$$\hat{p} = \frac{m}{n}$$

Sample from whole sample space — Monte Carlo



We really need at least one sample to fall in red region.

Sample from whole sample space — Monte Carlo

Error of order Wald (Brown, Cai, and DasGupta 2001)

$$\frac{\Delta p}{p} = \sqrt{\frac{1/p}{n}}$$

Usual $1/\sqrt{n}$ statistical error scaling. For fixed fractional uncertainty, number of samples scales as 1/p

Need $n \gtrsim 1/p$ at very least for reasonable estimate.

Sample from target region

Try to sample from region in which $\lambda \geq \lambda_{Observed}$.

Even if we could, that won't tell us *p*!

If we have some more information, we can compute p analytically.

E.g., I know the red area is a box of side 0.05. $p = 0.05^2$.

If we have some more information, we can compute p analytically.

Sometimes, we know (or hope!) our problem satisfies certain regularity conditions and large sample limit. We can apply asymptotics (Cowan et al. 2011).

E.g., $\lambda \sim \chi^2$. If you're lucky, finding p a matter of calling the right survival function from scipy.stats or root.

It might still be slightly involved, e.g., simulating to find unknown constants in the Gross-Vitells (Vitells and Gross 2011) method (though at a favourable threshold).

If we have some more information, we can compute p analytically.

Wonderful. Right? But the conditions aren't always satisfied.

We want generality. Generality is power to tackle any problem we want.

State of play for computing small p-values

- Sampling from the entire sampling space inefficient.
- The region correspond to p is important but sampling from it won't tell us p!
- Asymptotics needn't apply. When they do, the extra assumptions yield quick answers.

Compression connection to Bayesian computation

Connection to Bayesian computation

As for *p*-values, we can say a lot about Bayes. Some good, some bad. As before, only facts.

Bayes' theorem decomposes

 $Likelihood \times Prior = Evidence \times Posterior$

Posterior tackled by e.g., Markov Chain Monte Carlo. Method works for ill-normalised distributions. Never need to know evidence.

Bayesian evidence

The Bayesian evidence often ignored, though enables Bayesian model comparison (Kass and Raftery 1995), and so some effort made to compute it efficiently (Martin, Frazier, and Robert 2020).

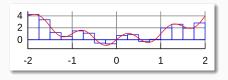
Integral of the likelihood over the model's parameter space

Evidence =
$$\mathcal{Z} = \int \mathcal{L}(\mathbf{x}) \pi(\mathbf{x}) \, d\mathbf{x}$$

High-dimensional integral. Not easy to compute.

Don't even think about it

Quadrature won't work in high-dimensions. Curse of dimensionality. We would need $\mathcal{O}(e^d)$ cells.



Sample form the prior

Just try sampling from the prior!

$$\hat{\mathcal{Z}} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\mathbf{x}_i)$$

for $\mathbf{x}_i \sim \text{Prior}$. Doesn't care about dimensionality!

But prior could be very different from posterior! The problem is compression. Most draws contribute nothing. Just like for *p*-values.

Usual $1/\sqrt{n}$ scaling, but potentially terrible variance.

Sample from the target

This won't work either. Just like for *p*-values.

Heuristic (Neal 2008)

The posterior depends only weakly on prior. Evidence depends strongly on it.

Thus hard to deduce evidence from posterior.

E.g., likelihood concentrated around $\theta \simeq 0$ and zero outside $|\theta| > 1$. Extending prior range from $|\theta| \leq 1$ to $|\theta| \leq 1000$ makes no difference to posterior. It changes evidence by factor 1000.

Well, the posterior might be asymptotically normal (Bernstein-von Mises theorem). Approximate the integral by a Gaussian! This is a Laplace approximation.

- Fast we know how to integrate Gaussians, just need to fit it to the posterior
- · But not reliable in so many problems of interest
- You'll get a fast answer, maybe not a correct answer.

State of play for computing evidence

- Sampling from the prior inefficient enormous compression.
- Posterior important, but sampling from it won't easily tell us the evidence.
- Asymptotics (e.g., Laplace approximation) won't always hold we want generality.

Sound familiar?

- Sampling from the prior whole sampling space inefficient enormous compression.
- Posterior Region corresponding to p important, but sampling from it won't easily tell us the evidence p-value
- Asymptotics (e.g., Laplace Wilks' approximation) won't always hold – we want generality.

Path sampling could be the answer (Gelman and Meng 1998).

- Prior and posterior miles apart enormous compression.
- Build a path a sequence of distributions between them.
- Evolve a collection of particles along that path.

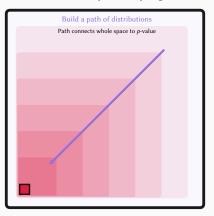
You may be familiar with annealing — cool from the prior to the posterior.

Path sampling could be the answer.

- Prior Sampling space and posterior region corresponding to p
 miles apart enormous compression.
- Build a path a sequence of distributions between them.
- Evolve a collection of particles along that path.

You may be familiar with annealing — cool from the prior to the posterior.

Solution - path sampling



Sequence of distributions from whole sampling space to the *p*-value.

Which path to the *p*-value?

Which path though? Don't claim optimality. But what follows is simple and it gets us there.

Which path to the *p*-value?

Natural that the path of intermediate distributions are based on contours of test-statistic

$$\pi^{\star}(\mathbf{x}) \propto \begin{cases} \pi(\mathbf{x}) & \lambda(\mathbf{x}) \geq \lambda^{\star} \\ 0 & \text{otherwise} \end{cases}$$

for some threshold λ^* . This is the constrained sampling distribution.

We start at $\lambda^\star = -\infty$ with the whole sampling distribution. The threshold monotonically increases along the path, until we reach the region corresponding to the *p*-value at $\lambda^\star = \lambda_{\text{Observed}}$.

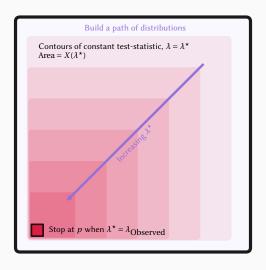
Which path to the *p*-value?

The survival function

$$X(\lambda^{\star}) \equiv \int_{\lambda(\mathbf{x}) \ge \lambda^{\star}} \pi(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

tells us the compression required to reach the threshold λ^* .

Along the path, the survival function monotonically decreases from X=1 to the p-value at $p=X(\lambda_{\rm Observed})$.



How fast to travel on the path to the p-value?

We have the path. How fast should we go? How about controlling the speed of compression through the survival function?

Take steps $\Delta X = \text{const.}$?

- Start at $X_0 = 1$. $X_1 = 1 \Delta X$... Stop at $X_i = 1 i\Delta X \le p$.
- Need $\Delta X \approx p$ for any reasonable precision.
- Too slow. Would require 1/p iterations to reach p and we're back to 1/p scaling!

How fast to travel on the path to the *p*-value?

We have the path. How fast should we go? How about controlling the speed of compression through the survival function?

Take steps $\Delta \log X = \text{const.}$

- Go faster. Constant exponential compression.
- Avoid 1/p.
- Let's try that.

How to find the path?

The sampling space could be complicated. It won't be nice squares like my pictures.

How on Earth can we evolve a collection of particles along path whilst compressing at a constant exponential rate?

And how can we estimate the survival function along the way?

Nested sampling (Skilling 2004; Skilling 2006) originally algorithm for Bayesian computation — computes evidence and posterior simultaneously.

- Evolves collection of n_{live} live points along path, to greater and greater likelihoods test-statistics
- Evolution controlled by single user parameter $-n_{live}$
- Approximately constant exponential compression
- Statistical estimates of survival function along the way
- All about compression no need to even talk about evidence or posterior here

General idea

- Sample *n* points from the sampling distribution
- · Rank them by test-statistic
- · Delete the least extreme half

You just compressed by factor 1/2! Repeat it i times and you'll achieve exponential compression $1/2^i$ at a constant rate!

0. Draw n_{live} samples from the whole sampling distribution — the live points

- 0. Draw n_{live} samples from the whole sampling distribution the live points
- 1. Denote the smallest test-statistic among the live points by λ^*

- 0. Draw n_{live} samples from the whole sampling distribution the live points
- 1. Denote the smallest test-statistic among the live points by λ^{\star}
- 2. Replace that live point by one drawn from the constrained sampling distribution

$$\pi^*(\mathbf{x}) \propto \begin{cases} \pi(\mathbf{x}) & \lambda(\mathbf{x}) \ge \lambda^* \\ 0 & \text{otherwise} \end{cases}$$

- 0. Draw n_{live} samples from the whole sampling distribution the live points
- 1. Denote the smallest test-statistic among the live points by λ^{\star}
- 2. Replace that live point by one drawn from the constrained sampling distribution

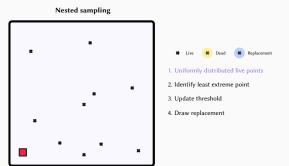
$$\pi^{\star}(\mathbf{x}) \propto \begin{cases} \pi(\mathbf{x}) & \lambda(\mathbf{x}) \geq \lambda^{\star} \\ 0 & \text{otherwise} \end{cases}$$

3. Make a statistical estimate of $X(\lambda^*)$ from this procedure

- 0. Draw n_{live} samples from the whole sampling distribution the live points
- 1. Denote the smallest test-statistic among the live points by λ^{\star}
- 2. Replace that live point by one drawn from the constrained sampling distribution

$$\pi^*(\mathbf{x}) \propto \begin{cases} \pi(\mathbf{x}) & \lambda(\mathbf{x}) \ge \lambda^* \\ 0 & \text{otherwise} \end{cases}$$

- 3. Make a statistical estimate of $X(\lambda^*)$ from this procedure
- 4. If $\lambda^{\star} \geq \lambda_{\text{Observed}}$, we reached *p*. Stop. Else go to 1.



Compression

Make a statistical estimate of $X(\lambda^*)$ *from this procedure*

How? We know that $X_0 = 1$. How much do we expect X to contract when we replace the least extreme test-statistic?

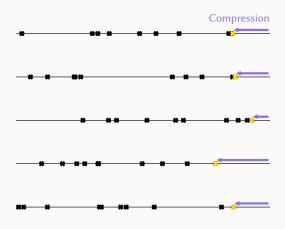
Drawing from the constrained sampling distribution means live points are distributed uniformly in X from 0 to $X(\lambda^*)$.

In other words,

$$y_i = \frac{X(\lambda_i)}{X(\lambda^*)}$$

for i = 1 to n_{live} are uniformly distributed from 0 to 1.

The largest one, $t \equiv \max y_i$, gives us the compression.



What can we say about *t*? We can write the pdf!

$$p(t) = \binom{n_{\text{live}}}{1} \cdot t^{n_{\text{live}} - 1} \cdot 1 = n_{\text{live}} t^{n_{\text{live}} - 1}$$

where the factors are combinatorial, the probability of $n_{live} - 1$ samples less than t, and lastly the probability density of a point at t.

This is a $\beta(n_{\text{live}}, 1)$ distribution.

We can find the expected compression:

$$E[\log t] = n_{\text{live}} \int_0^1 t^{n_{\text{live}}-1} \log t dt = -\frac{1}{n_{\text{live}}}$$

Look at log *t* because logarithms add and expectation is linear.

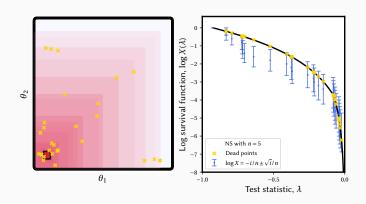
Thus we may estimate that at iteration i

$$X(\lambda_i^*) = \prod_{j=1}^i t_j \approx \prod_{j=1}^i e^{-1/n_{live}} = e^{-i/n_{live}}$$

This is the desired constant exponential compression! and a way to estimate it!

The user parameter n_{live} controls the speed and consequently the precision.

We don't know *X* but make statistical estimates of it along the path



Stopping

NS builds a path straight to the p-value in roughly equal steps of $\Delta \log p \simeq 1/n_{live}$. We just stop once we're there.

Stop as soon as $\lambda^{\star} \geq \lambda_{\text{Observed}}$ at iteration n_{iter} . Estimate p from compression

$$p = X(\lambda_{\text{Observed}}) \simeq \prod_{i=1}^{n_{\text{iter}}} e^{-1/n_{\text{live}}} = e^{-n_{\text{iter}}/n_{\text{live}}}$$

Thus NS breaks tiny *p* into a product of moderate factors.

Assumptions

Basically no assumptions about problem, no asymptotics, completely general

- Assumes we can evaluate the test-statistic
- Assumes we can draw from the sampling distribution
- Plateaus in the test-statistic (regions of sample space where it is constant) cause subtelty but easily overcome (Fowlie, Handley, and Su 2020b).

For it to work efficiently, further assumes we can efficiently and correctly draw from the constrained sampling distribution

Uncertainties

Let's look at the errors from the β distributions. As $\log t \sim \beta(n_{\mathrm{live}}, 1)$,

$$Var[\log t] = \frac{1}{n_{live}^2}$$

As $\log p$ is estimated as the sum of n_{iter} independent $\log t$ draws,

$$Var[\log p] = n_{iter} Var[\log t] = \frac{n_{iter}}{n_{live}^2} = \frac{\log 1/p}{n_{live}}$$

where we plugged in the estimate of $\log p$. Finally,

$$\frac{\Delta p}{p} = \Delta \log p = \sqrt{\frac{\log 1/p}{n_{\text{live}}}}$$

Note the usual $1/\sqrt{n}$ scaling.

Uncertainties $-\log p$ not p

Exponential compression. Estimating $\log p$ not p.

It is $\log p$ that has approximately symmetric, Gaussian uncertainty.

Just fine. When p is small, it is magnitude $\log p$ that matters.

What did we gain? — Theoretical speedup

For nested sampling,

$$\frac{\Delta p}{p} = \sqrt{\frac{\log 1/p}{n_{\text{live}}}}$$

For Monte Carlo,

$$\frac{\Delta p}{p} = \sqrt{\frac{1/p}{n}}$$

Looking good. Ripped an exponential factor out of the problem.

Closer look at theoretical speedup

We need to write the behaviour in terms of test-statistic evaluations rather than n_{live} ,

$$n = \text{average calls per iteration} \cdot n_{\text{iter}} = \frac{n_{\text{iter}}}{\epsilon}$$

We expect though that $n_{\text{iter}} = n_{\text{live}} \log 1/p$ from the exponential compression,

$$n = \frac{n_{\text{live}} \log 1/p}{\epsilon}$$

Thus finally,

$$\frac{\Delta p}{p} = \sqrt{\frac{\log^2 1/p}{\epsilon n}}$$

Closer look at theoretical speedup

For fixed fractional uncertainty on p, we expect to obtain a speed-up versus MC

$$\frac{\text{Evaluations for NS}}{\text{Evaluations for MC}} = \frac{(\log^2 1/p)/\epsilon}{1/p}$$

Massive gains for small p! Provided that the efficiency factor ϵ doesn't spoil things.

Exploration

So far nothing depended on dimension! Let alone geometry! I glossed over a detail though.

- How to draw a replacement live point from the constrained sampling distribution, λ > λ*?
- Involves trial and error, and some inefficiency (the factor ϵ)
- Re-introduces dependence on dimensionality of the sampling space (though it needn't be exponential)

Exploration

- This requires an exploration strategy. Fortunately, the current set of live points can guide the exploration.
- There are well-established implementations of nested sampling that do this, developed and used for Bayesian inference in other scientific settings
- There are potentially optimisations for this setting
- Correctness can be checked (Fowlie, Handley, and Su 2020a)

Rejection sampling

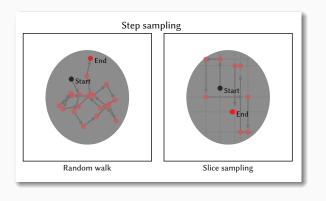
MultiNest (Feroz and Hobson 2008; Feroz, Hobson, and Bridges 2009; Feroz et al. 2013) — bound live points by ellipsoids. Use them to approximate the λ^* contour. Sample from the ellipsoids.



Rejection sampler — efficient at small d, but curse of dimensionality ultimately strikes.

Step samplers

Take walk starting from a randomly chosen existing live point. E.g., PolyChord (Handley, Hobson, and Lasenby 2015a; Handley, Hobson, and Lasenby 2015b) — slice sampling walk.



Efficient and good scaling, $\epsilon \propto 1/d$.

Does it work?

That's all for theory. We need some numerical investigation.

Does it work as I say it does?

Do we benefit from the $\log^2 1/p$ scaling? or does the ϵ efficiency factor spoil things?

Here are our results, you should try it too!

A simple problem

The *p*-value associated with *d* independent Gaussian measurements

- *d* dimensional sampling space, $\mathbf{x}_i \sim \mathcal{N}(\mu, \sigma^2)$.
- Test-statistic

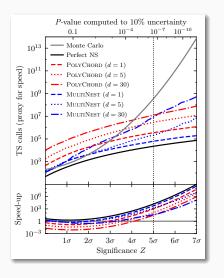
$$\lambda = \sum_{i=1}^{d} \left(\frac{\mathbf{x}_i - \mu}{\sigma} \right)^2$$

We know analytically

$$\lambda \sim \chi_d^2$$
 such that $p = 1 - F_{\chi_d^2}(\lambda_{\text{Observed}})$

 Toy example that allows us to easily control dimension, size of p and check correctness

Number of evaluations for fixed fractional uncertainty



Perfect NS means if 100% efficiency, $\epsilon=$ 1, was possible

Performance on simple problem

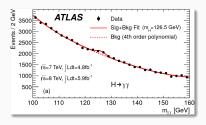
- For large p, nested sampling could only narrowly beat MC in the best-case scenario, and typically worse. MC just fine when p is moderate
- For small $p \lesssim 4\sigma$, the scaling kicks in. Nested sampling wins by orders of magnitude
- Nested sampling performance depends on dimensionality but even for 30d sampling space, winning by 10 6 at 7 σ

Higgs-like example

That was a warm-up. How about a resonance search?

- Simplified version of the original Higgs discovery by ATLAS (Aad et al. 2012) in the diphoton channel
- H₀ Standard Model (SM) background-only hypothesis, with a known shape and an unknown total number of background events
- $H_1 SM + a$ Higgs boson with a Gaussian signal, with a known width but an unknown mass and an unknown positive signal strength

Higgs-like example

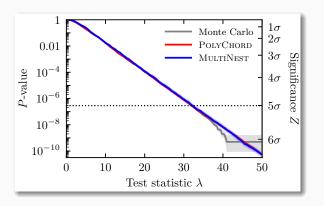


- 30 dimensional sampling space, x the Poisson-distributed counts in the 30 bins
- Log-likelihood ratio test-statistic with unknown parameters profiled

$$\lambda(\mathbf{x}) = 2\log\left(\frac{\max P(\mathbf{x} \mid m_h, \mu, b)}{\max P(\mathbf{x} \mid \mu = 0, b)}\right)$$

Likelihood just a product of 30 Poissons.

Result on Higgs-like example



Compute p for increasing test-statistic, λ

Result on Higgs-like example

- Results consistent between MC, NS and Gross-Vitells predicted slope to 6σ and beyond
- To reach 6.5σ with uncertainty $\Delta \log_{10} p \approx 0.2$, PolyChord needed 3×10^6 calls and MultiNest needed 4×10^7
- To reach a similar uncertainty, MC would require 10¹¹ MC simulations.
- Nested sampling winning by about 10⁵ for PolyChord

Absolutely
OBAYESIANS
inside. nmar

AWESOME ALGORITHM For COMPUTING P-VALUES

- Similar problem of compression in *p*-value and Bayesian evidence computation
- · General solution is path sampling
- Nested sampling particularly suitable for *p*-value computation, as it naturally builds path to the *p*-value

G

- Orders of magnitude faster than Monte Carlo for small p, as scaling $\log^2 1/p$ rather than 1/p for fixed relative error
- Performance understood theoretically and demonstrated numerically

References

Aad, Georges et al. (2012). "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC." In: Phys. Lett. B 716, pp. 1–29. arXiv: 1207.7214 [hep-ex].

Brown, Lawrence D., T. Tony Cai, and Anirban DasGupta (2001). "Interval Estimation for a Binomial Proportion." In:

<u>Statistical Science</u> 16.2, pp. 101–117. URL:

http://www.jstor.org/stable/2676784.

Cousins, Robert D. (July 2018). "Lectures on Statistics in Theory: Prelude to Statistics in Practice." In: arXiv:1807.05996, arXiv:1807.05996.

References ii

- Cowan, Glen et al. (2011). "Asymptotic formulae for likelihood-based tests of new physics." In: Eur. Phys. J. C 71. [Erratum: Eur.Phys.J.C 73, 2501 (2013)], p. 1554. arXiv: 1007.1727 [physics.data-an].
- Feroz, F., M. P. Hobson, and M. Bridges (2009). "MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics." In: Mon. Not. Roy. Astron. Soc. 398, pp. 1601–1614. arXiv: 0809.3437 [astro-ph].
- Feroz, F. et al. (2013). "Importance Nested Sampling and the MultiNest Algorithm." In: <u>The Open Journal of Astrophysics</u>. arXiv: 1306.2144 [astro-ph.IM].

References iii

- Feroz, Farhan and M. P. Hobson (2008). "Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis." In: Mon. Not. Roy. Astron. Soc. 384, p. 449. arXiv: 0704.3704 [astro-ph].
- Fisher, R. A. (1925). <u>Statistical Methods for Research Workers</u>. Oliver and Boyd.
- Fowlie, Andrew (Apr. 30, 2021). "Comment on "Reproducibility and Replication of Experimental Particle Physics Results"." In:

 Harvard Data Science Review. arXiv: 2105.03082

 [physics.data-an].
- Fowlie, Andrew, Will Handley, and Liangliang Su (2020a). "Nested sampling cross-checks using order statistics." In:
 - Mon. Not. Roy. Astron. Soc. 497.4, pp. 5256–5263. arXiv: 2006.03371 [stat.CO].

References iv

- Fowlie, Andrew, Will Handley, and Liangliang Su (Oct. 2020b). "Nested sampling with plateaus." In: arXiv: 2010.13884 [stat.CO].
- Fowlie, Andrew, Sebastian Hoof, and Will Handley (May 2021). "Nested sampling for frequentist computation: fast estimation of small *p*-values." In: arXiv: 2105.13923 [physics.data-an].
- Gelman, Andrew and Xiao-Li Meng (1998). "Simulating normalizing constants: from importance sampling to bridge sampling to path sampling." In: Statistical Science 13.2, pp. 163–185. URL: https://doi.org/10.1214/ss/1028905934.
- Handley, W. J., M. P. Hobson, and A. N. Lasenby (2015a). "PolyChord: nested sampling for cosmology." In:

 Mon. Not. Roy. Astron. Soc. 450.1, pp. L61–L65. arXiv: 1502.01856 [astro-ph.C0].

References v

- Handley, W. J., M. P. Hobson, and A. N. Lasenby (Nov. 2015b). "PolyChord: next-generation nested sampling." In:

 Mon. Not. Roy. Astron. Soc. 453.4, pp. 4384–4398. arXiv: 1506.00171 [astro-ph.IM].
- Hubbard, Raymond and M. J Bayarri (2003). "Confusion Over Measures of Evidence (p's) Versus Errors (α 's) in Classical Statistical Testing." In: <u>Am. Stat.</u> 57.3, pp. 171–178.
- Kass, Robert E. and Adrian E. Raftery (1995). "Bayes Factors." In: J. Am. Stat. Assoc. 90.430, pp. 773–795.
- Lakens, Daniël (2021). "The Practical Alternative to the p Value Is the Correctly Used p Value." In:
 - Perspectives on Psychological Science.

References vi

Lyons, Louis (Oct. 2013). "Discovering the Significance of 5 sigma."

In: <u>arXiv e-prints</u>, arXiv:1310.1284, arXiv:1310.1284. arXiv: 1310.1284 [physics.data-an].

Martin, Gael M., David T. Frazier, and Christian P. Robert (2020).

Computing Bayes: Bayesian Computation from 1763 to the 21st Cent arXiv: 2004.06425 [stat.CO].

Neal, Radford (2008).

The Harmonic Mean of the Likelihood: Worst Monte Carlo Method E https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/.

Neyman, J. and E. S. Pearson (1933). "On the Problem of the Most Efficient Tests of Statistical Hypotheses." In:

Philos. Trans. Roy. Soc. London Ser. A 231, pp. 289–337. ISSN: 02643952. URL: http://www.jstor.org/stable/91247.

References vii

- Skilling, John (Nov. 2004). "Nested Sampling." In:

 <u>American Institute of Physics Conference Series</u>. Ed. by
 Rainer Fischer, Roland Preuss, and Udo Von Toussaint. Vol. 735.

 American Institute of Physics Conference Series, pp. 395–405.
- (2006). "Nested sampling for general Bayesian computation." In:
 Bayesian Analysis 1.4, pp. 833–859.
- Vitells, Ofer and Eilam Gross (2011). "Estimating the significance of a signal in a multi-dimensional search." In: <u>Astropart. Phys.</u> 35, pp. 230–234. arXiv: 1105.4355 [astro-ph.IM].
- Wagenmakers, Eric-Jan (2007). "A practical solution to the pervasive problems of *p* values." In: <u>Psychon. Bull. Rev.</u> 14, pp. 779–804.

Translation — NS frequentist \Leftrightarrow NS Bayesian

- Sampling space ⇔ Parameter space
- Sampling distribution

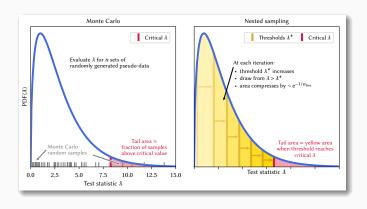
 ⇔ Prior distribution
- Test-statistic

 ⇔ Likelihood function
- Region corresponding to p-value
 ⇔ Posterior distribution
 ⇔
 Target
- Survival function

 ⇔ Volume variable
- Expected p-value under sampling distribution
 ⇔ Evidence
 (expected likelihood under prior distribution)

Summary

Ripped an exponential factor out of the problem.



P-values

P-values appear in two statistical frameworks (Hubbard and Bayarri 2003):

- Fisher 1925: p is continuous measures of evidence against H_0
- Neyman and Pearson 1933: $p < \alpha$ allows us to control the type-1 error rate at α

Type-1 error rate

Rate at which would be reject the null, H_0 , when it was true.

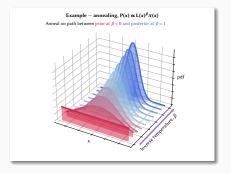
5σ and beyond

In some cases, we may desire even more than 5σ . Table from Lyons 2013

Search	Degree of	Impact	LEE	Systematics	Number
	surprise				of σ
Higgs search	Medium	Very high	Mass	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B_s oscillations	Medium/low	Medium	Δm	No	4
Neutrino oscillations	Medium	High	$sin^2(2\theta), \Delta m^2$	No	4
$B_s \rightarrow \mu\mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/very high	M, decay mode	Medium	7
$(g-2)_{\mu}$ anomaly	Yes	High	No	Yes	4
$H \text{ spin } \neq 0$	Yes	High	No	Medium	5
4^{th} generation q, l, ν	Yes	High	M, mode	No	6
$v_{\nu} > c$	Enormous	Enormous	No	Yes	>8
Dark matter (direct)	Medium	High	Medium	Yes	5
Dark energy	Yes	Very high	Strength	Yes	5
Grav waves	No	High	Enormous	Yes	7

In high-energy physics, we need to compute tiny p-values.

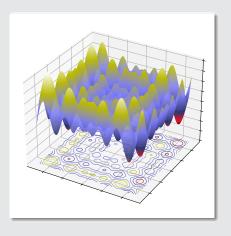
Familiar example



Thermodynamic integration, Annealed Importance Sampling, Sequential Monte Carlo and Nested Sampling can be thought of as path samplers.

Multi-modal

The test-statistic could contain several distinct modes — problematic?



Sample from whole sample space — **Monte Carlo**

Looks wonderful. Very (computationally) expensive.

Sample from the target

There are techniques — e.g., inverse-harmonic mean, where evidence written as posterior mean,

$$\frac{1}{\mathcal{Z}} = \left\langle \frac{1}{\mathcal{L}} \right\rangle \simeq \frac{1}{n} \sum \frac{1}{\mathcal{L}(\mathbf{x}_i)}$$

for $\mathbf{x}_i \sim$ Posterior. Compute this using draws from the posterior using MCMC!?

No thank you. Terrible properties because of above reasoning. Radford Neal calls it the Worst MC Method Ever.