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Dark matter



Dark matter

We all know the evidence for dark matter (DM) in gravitational
interactions, e.g.

(I) Rotation curves (II) CMB
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WIMP miracle

Freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density.
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WIMP miracle

Freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density.

Correct prediction for weak interaction!
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WIMP miracle

Freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density.

Also predicts elastic scattering with SM!
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Direct detection

We can search for DM in direct detection experiments. DM
elastic scatters with nucleons in a detector on Earth.

Sun
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WIMP

wind 

In the laboratory frame there is a wind of DM because the
Milky Way rotates inside a stationary DM halo.
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Gran Sasso

There are major DD experiments in the Gran Sasso laboratory
below the mountain

They are counting experiments — Poisson background from
radioactive sources and neutrinos.
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XENON1T

XENON1T uses one-tonne of liquid xenon — high atomic
number, small radioactive contamination but expensive

With shielding and active background rejection techniques,
backgrounds are under control — expect O(1) background
event per tonne-year of exposure.
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XENON1T

It set world-leading limit on spin-independent scattering
cross-section between DM and nucleons
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Two observed events, 1.62 expected background events. The
number of expected signal events depends on the WIMP mass
and scattering cross section, s ∝ σ.
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XENON1T

At high mass, the number density of DM n = ρ/m and thus the
flux falls and the limit weakens.

At low mass, the experimental efficiency falls as the energy
recoil energy is tiny.
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Dependence on velocity profile

The flux of DM and amplitude of scattering in detector depend
on DM velocity. The expected number of signal events is a
moment of the velocity distribution,

s =
∫

w(v) · f (⃗v) d3v

The events function depends on the experiment, DM mass and
scattering cross section. As detector not sensitive to direction,
events function is isotropic in the laboratory frame.

The velocity distribution could be anisotropic in the galactic
frame, but isotropic in simplest models.
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Events function

The shape of the events function depends on the DM mass.
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Maxwell-Boltzmann

Lighter masses need a greater velocity for detectable recoils.
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Dark matter velocity profile

We don’t know the identity of DM, but we know something
about its density and velocity from e.g., rotation curves.
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Velocity curves. Rubin et al [2].
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Dark matter velocity profile

From FG = mv2/r, we find ρ ∝ 1/r2.

By the collisionless Boltzmann equation, this density
corresponds to Maxwell-Boltzmann

f (v) ∝

v2e−
(

v
v0

)2
v < vesc

0 v ≥ vesc

We truncate it at the escape velocity of our galaxy (though
don’t use ρ ∝ 1/r2 as vesc and mass would be infinite).

This neglects non steady-state effects: clumps, streams and a
possible dark disk.

Reasonable agreement with simulations.
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Empirical

Is the DM velocity correlated with that of old, metal-poor
stars?

• Determine f (v) from correlation with metal-poor
stars [3]. Significant departure from Maxwellian with
anisotropic component

• Correlation is weak or non-existent [4]

I don’t know the truth but techniques for incorporating that
information could be challenging.
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Modelling uncertainty in f (v)



Modelling uncertainty in profile

What if we want to reflect our uncertainty in the DM profile?

• Parametric approach: permit variation in v0 and vesc
parameters in Maxwellian profile or shape parameters in
another distribution.

What if we want uncertainty about distribution not just shape
parameters?

• Non-parametric approach: permit all possible profiles.

How should we handle an infinite set of profiles?
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Frequentist approach

1. Throw away all prior knowledge about DM in galaxy.
2. Profile infinite set of profiles by e.g., minimising
chi-squared or maximising likelihood. Provable that the
ansatz

f (v) = ∑
i

κiδ(v − vi)

is sufficient for minimising chi-squared and finding
confidence intervals for signal rates [5, 6].

3. “Best-fit” profile not unique. One found from above
procedure is an unphysical sum of delta-functions.
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Bayesian approach

What if we could combine, in a coherent manner, experimental
data and our background knowledge about the profile?

Maybe it isn’t exactly Maxwellian, but perhaps it’s something
similar?

What can we do?
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A possible solution?

Shannon’s [7] information theory — Jaynes’ [8] principle of
maximum entropy — Skilling’s [8] quantified maximum
entropy.
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Shannon entropy

Construct a measure of information learnt by receiving a
message mi that you expected with belief pi. Requirements

• Anti-monotonic — more learnt from unexpected message
• I ≥ 0 — information positive
• I[p = 1] = 0 — no new information if already certain
about message

• I[pq] = I[p] + I[q] — information additive for
independent messages

imply that I = − ln p.

Shannon entropy for discrete distributions is the expected
information in a message [9]:

H = E[I] = −∑
i

pi ln pi
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Who learns the information?!

In the early days, this was a point of confusion:

• The sender: but he knows what he sent!
• The “pipe”/communication channel: this is strange, but
was Shannon’s thought and lead to ideas about channel
capacity.

• The receiver: with this interpretation, the Shannon
entropy measures ignorance of receiver/how much he
expects to learn from message.
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Relative Shannon entropy

Shannon’s naive generalisation to continuous distributions

H = −
∫

p(x) ln p(x)dx

violates Shannon’s axioms and has other undesirable
properties, e.g., it is not invariant under reparameterisations.

Correct expression found by limiting density of discrete
points [10]

H = −
∫

p(y) ln
p(y)
m(y)

dy
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Meaning of m(x)

In the discrete case, the distribution with maximum Shannon
information is uniform. This represents maximum ignorance.

In the continuous case, there is no such unique distribution
because of covariance under changes of variable.

It is the age old question, which distribution represents
ignorance? This is not solved; you must pick one, m(x).
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Principle of Maximum Entropy (MaxEnt)

Which prior represents ignorance? Jaynes’ used Shannon
entropy to make his famous MaxEnt principle [11]

The prior that represents ignorance, subject to
constraints, is the maximum entropy one.

For example, if you know only ⟨x⟩, the MaxEnt distribution is
the exponential. If you know ⟨x⟩ and ⟨x2⟩, the MaxEnt
distribution is the Gaussian.
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Skilling’s quantified MaxEnt

Jaynes’ MaxEnt principle worked for constraints on moments,
but not not noisy data, and failed to provide a measure of
reliablility.
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Skilling’s quantified MaxEnt

Jaynes’ MaxEnt principle worked for constraints on moments,
but not not noisy data, and failed to provide a measure of
reliablility.

We in fact want p( f ) — a distribution upon possible choices of
f .

21/31



Skilling’s quantified MaxEnt

Jaynes’ MaxEnt principle worked for constraints on moments,
but not not noisy data, and failed to provide a measure of
reliablility.

Skilling [12] demonstrated that if a general rule of assigning
p( f ) exists, it must depend on the Shannon entropy by

p( f ) ∝ eβH[ f ,m]

where β represents the strength of our prior conviction that
f = m. He found this by assuming it must agree with a
limiting case of a multinomial process.
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Undesirable properties

Skilling’s prior, however, suffers from problems as it in fact
depends on the bin size, ∆v. They relate to the fact that it is
not divisible.

In the continuum limit ∆v → 0, the law of large numbers
means that the prior overwhelmingly favors f = m regardless
of β.
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MaxEnt inspired approach

We consider a multinomial process — throw a finite number, β,
of lumps of probability to construct a distribution. The lumps
falls into bins with probabilities from the default model, m.

This avoids the law of large numbers as we throw a finite
number of finite lumps. We may still take the continuum limit
∆v → 0. It means, however, that f (v) must, on small enough
scales, appear spiky.

For β → ∞, f → m, i.e., the default model is selected.
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Marginalization

The likelihood in a DD counting experiment is Poisson,

L ≡ P(o |mχ, σ, f ) =
e−λλo

o!

with
λ =

∫
w(⃗v) · f (⃗v) d3v + b

The events functions depends upon the DM mass, cross
section and velocity distribution.
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Marginalization

We want to marginalise uncertainty in f (v),

⟨L⟩ = ∑ P(o |mχ, σ, f ) · P( f |m)

= ∑
e−λλo

o!
· P( f |m)

We are averaging upon our multinomial prior for the velocity
distirbution, given our default one, a Maxwellian.
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Marginalization

We may perform the sum! A general expression is in the paper.
For two observed events,

⟨L⟩ = 1
2
⟨

e−w/β
⟩β

m

(
β − 1

β

⟨
we−w/β

⟩2
m⟨

e−w/β
⟩2

m

+
1
β

⟨
w2e−w/β

⟩
m⟨

e−w/β
⟩

m

)

where ⟨w⟩m ≡
∫

w(⃗v) · m(⃗v) d3v etc.

Thus we can marginalize over uncertainty in the velocity
profile by computing a few integrals.
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Limits from XENON1T with uncertainty in the
velocity profile



Treatment of XENON1T

We now have the ingredients that we need:

• Result of Poisson counting experiment from XENON1T.
The experiment saw 2 events with 1.66 expected
background events. We know the events function.

• Background knowledge about the velocity profile. The
prior depends upon a parameter β describing our
conviction that the profile is Maxwellian.

• A formalism for marginalising our uncertainty in the
velocity profile. We can perform the marginalisation
analytically, reducing it to a few integrals.
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Validation — reproduce limit with Maxwellian

From a simple Poisson likelihood,

L =
e−λλo

o!

with λ = s + b, b = 1.66 and o = 2 we find our upper limit on
the scattering cross section, σ, assuming a Maxwellian. The
number of signal events, s ∝ σ
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Validation — reproduce limit with Maxwellian
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Reasonable agreement. The XENON1T official analysis used an
unbinned analysis and achieved greater exclusion. This
validates our description of the experiment.
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Isotropic profiles

Assume that the f (v) is isotropic in the galactic frame. Let’s
see how the observed limit changes as we marginalise
uncertainty in the velocity distribution.
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Isotropic profiles — varying β
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β = 100. The limit is indistinguishable from that from a
Maxwellian.
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Isotropic profiles — varying β

100 101 102 103 104

mχ (GeV)

10−47

10−46

10−45

10−44

10−43

σ
S

I
p

(c
m

2 )

90% upper limit

β = 10 + isotropic + fixed

Maxwell-Boltzmann

0

2

4

6

8

10

∆
χ

2

β = 10. Still no change!
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Isotropic profiles — varying β

100 101 102 103 104

mχ (GeV)

10−47

10−46

10−45

10−44

10−43

σ
S

I
p

(c
m

2 )

90% upper limit

β = 5 + isotropic + fixed

Maxwell-Boltzmann

0246810

co
lo

rb
ar

la
b

el

β = 5. Tiny weakening of the limit for light masses.
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Isotropic profiles — varying β

100 101 102 103 104

mχ (GeV)

10−47

10−46

10−45

10−44

10−43

σ
S

I
p

(c
m

2 )

90% upper limit

β = 1 + isotropic + fixed

Maxwell-Boltzmann

0246810

co
lo

rb
ar

la
b

el

β = 1. Weakening visible for light masses, m ≲ 60GeV
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Anisotropic profiles

Now permit anisotropy. This is important — it could be tuned
to counter the Earth’s motion and result in a vanishing flux
and signal.
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Anisotropic profiles — varying β
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β = 100. The limit is indistinguishable from that from a
Maxwellian.

30/31



Anisotropic profiles — varying β
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β = 10. Unlike the isotropic case, a change visible.
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Anisotropic profiles — varying β
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β = 5. Weakening of the limit for light masses.
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Anisotropic profiles — varying β
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β = 1. Weakening visible for light and heavy masses, though
limit at m ≈ 60GeV quite robust.
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Conclusions

• Technique for marginalising uncertainty in the DM
velocity profile

• Strength of conviction that profile Maxwellian
parameterised by β

• We find that once the uncertainty in marginalised, the
XENON1T limit is quite robust with respect to the velocity
profile

• Substantial impact noticeable in anisotropic case
• The multinomial prior was not perfect. Discrete lumps of
probability. Can we do better?

• How can we incorporate information from metal-poor
stars?
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Questions?
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