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Nutshell



What is probability?

A measure of plausibility.

Probability⇔ plausibility
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Games of chance

We are familiar with the application of probability to games of
chance.

What is the probability of heads?
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Games of chance

We are familiar with the application of probability to games of
chance.

What was the probability of being dealt this winning hand?
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Games of skill

We are suspicious of the application of probability to games
of skill.

What was the probability that the machine would beat the
human?
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Games of skill

We are suspicious of the application of probability to games
of skill.

Though perhaps accept it when gambling is common.

What was the probability that Leicester would win the Premier
League?
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Scientific theories

What about applying it to scientific theories?

What is the probability of this theory in light of LHC
experiments?
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Scientific theories

What about applying it to scientific theories?

What about this one in light of LIGO’s discoveries?
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Prior knowledge

All of them depend upon priors

The probability of a heads from the toss of a coin depends on
prior belief about the dynamics and initial conditions of the
coin.
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Prior knowledge

All of them depend upon priors

The probability of a winning hand depends on prior belief
about the shuffled pack of cards and the integrity of the
dealer.
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Prior knowledge

All of them depend upon priors

The probability of victory in go or a football match depends
on prior beliefs about the skills of the players and models for
the outcome.
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Prior knowledge

All of them depend upon priors

The probability of a scientific theory in light of data depends
on prior beliefs about the theory’s parameters, the theory
itself and alternative theories.
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Bayesian statistics



Bayesian statistics

Bayesian statistics is a mathematical framework for
describing plausibility — a calculus of beliefs [2].

Developed by Bayes, Laplace and Jeffreys in 18th, 19th and
20th centuries.
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Bayes’ theorem

The most important equation is Bayes’ theorem — a unique
rule for updating plausibility in light of data:

p(M | D) =
p(D | M)

p(D)
· p(M).

Our posterior belief in a model, M, is found by updating our
prior belief with data, D.
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Model comparison

To update our belief in a model in light of data, we must
consider more than one model.

If we believe absolutely in a single model, we obtain

p(M | D) = p(M) = 1.

We simply find that we are certain about the model before
and after data.
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Bayes factors

Thus we must compare models. We compare two models with
a so-called Bayes factor

Bayes factor = Relative plausibility after data
Relative plausibility before data

in maths, by Bayes’ theorem,

Bayes factor = p(D | Ma)

p(D | Mb)︸ ︷︷ ︸
Calculate this ratio

=

Posterior odds — output︷ ︸︸ ︷
p(Ma | D)

p(Mb | D)

p(Ma)

p(Mb)︸ ︷︷ ︸
Prior odds — input
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Bayesian evidence

A Bayes factor is itself a ratio of evidences, where

Evidence = p(D | M) =
∫

p(D | M, x) · p(x | M) dx

The integrand is a product of likelihood and prior. Likelihood
could be e.g. a Gaussian for Higgs mass measurement or
Planck measurement of the dark matter relic density.

The integration is over the model’s parameters x. The
integration may be computationally challenging.
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Fine-tuning

We always evaluate evidences with the observed data;
nevertheless, the probability of any data must equal one,

p(any data | M) =
∫

p(D | M) dD = 1.

Thus models have a finite probability mass to spend on their
predictions.
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Fine-tuning

This means that fine-tuned models and models that make
diffuse predictions are penalised.
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Fine-tuning

This is an automatic Occam’s razor/penalty for fine-tuning.
Complicated theories make diffuse predictions. Fine-tuned
theories make generically bad predictions. They are relatively
implausible.

See Csaba’s talk tomorrow or my talk last year.
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Example

Since virtue cannot be taught, only demonstrated, I now
present an example with models of dark matter.
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Dark matter experimental evidence and
constraints



Dark matter experimental evidence

We all know the evidence for dark matter (DM) in gravitational
interactions, e.g.

(I) Rotation curves [3] (II) CMB [4]
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WIMP miracle

Once it is cold enough, DM particles cannot overcome Hubble
expansion and thus cannot annihilate.

This freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density.
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WIMP miracle

This is the WIMP miracle — as correct density achieved for
weak interactions.
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DM annihilates to SM

DM must annihilate in the early Universe to set the relic
density measured by Planck.

DM

DM SM

SM

DM annihilation
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Relic abundance

From measurements of the CMB Planck [4] found

Relic abundance = Ωh2 = 0.1199± 0.0022

in ΛCDM. We use a Gaussian likelihood.
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Indirect detection

DM annihilation could result in signals from high
mass-to-light galaxies such as dwarf spheroidal galaxies.

Fermi-LAT [5] searched for a γ-ray signal but saw nothing,
resulting in constraints on DM annihilation cross section.
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DM scatters with SM

We can search for DM in direct detection experiments. DM
elastic scatters with nucleons in a detector on Earth.

DM

DM SM

SM

Di
re
ct
de
te
ct
io
n

There is a wind of WIMP particles from the Earth’s motion in
the dark matter halo. 19/34



Direct detection

The Panda [6], LUX [7], XENON [8] and PICO [9] experiments
saw nothing, resulting in exclusion contours on the (mass,
cross section) planes:

Our likelihood function for this data was a step-function. We
included uncertainty in nuclear form factors and the local
density. 20/34



SM annihilates to DM

We can search for DM produced from collisions of SM particles.

DM

DM SM

SM

Collider production
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Collider searchers

The LHC [10] saw nothing — wanted to find missing energy as
DM escapes from the detector.

LEP [11] saw nothing — wanted to find Z decaying into DM
particles.
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Data

Ωh2 0.1199± 0.0022± 10% Planck [4]

ΓinvZ 499.0± 1.5± 0.014MeV LEP [12]
BRinvh ≲ 0.24 LHC [13]

σ
p,n
SI ≲ 10−46cm2 PandaX [6]

σn
SD ≲ 10−40cm2 PandaX [14]

σ
p
SD ≲ 10−40cm2 PICO [7]
⟨σv⟩ ≲ 10−26cm3/s IceCube [5]

Mono-X searches
√

s = 8 TeV and 13 TeV LHC [10]
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Waning of the WIMP?

In light of the failure to discover DM in direct detection
experiments, many doubting the plausibility of WIMP DM.

WIMP DM models can be fine-tuned to agree with data but
was their plausibility damaged?
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Simple theories of dark matter



Simplest theories of DM

The simplest WIMP models of DM add a single particle to the
SM: the WIMP itself.

The WIMP interacts with SM by a Z or Higgs portal:

DM

DM

Higgs or Z
boson

We consider all renormalizable, Lorentz invariant interactions
for WIMPs with spin-0, 1/2 and 1.
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SM portal models

There are many models

(scalar, Majorana fermion, Dirac fermion, vector) spin of WIMP
× (Higgs, Z) mediator

We added them all to the DM program microMEGAs [15, 16]
via the model building program calcHEP [17].
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Priors for DM mass and couplings

We picked logarithmic priors for DM mass and coupling, since
we are ignorant of their scale.

DM mass, mχ 1 GeV – 10 TeV Log
DM coupling with SM, g 10−4 – 4π Log

There is a sensitivity analysis with linear priors in the paper.
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Priors nuisance parameters

DM scattering rate with matter depends upon nuclear form
factors.

Nuclear

σs 41.1± 8.1+7.8−5.8MeV Lattice, ETM [18] Gaussian
σπN

{
37.2± 2.6+4.7

−2.9MeV Lattice, ETM [18]
}

Flat + tails
58± 5MeV Pheno [19]

mu/md 0.38 – 0.58 Lattice [12] Flat
ms/md 17 – 22 Lattice [12] Flat

We also investigated an alternative treatment of σπN .
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Priors nuisance parameters

DM flux on Earth depends on density and velocity distribution
of DM.

Astrophysical

ρDM 0.3GeV/cm3 Log-normal
vesc 550± 35 km/s Gaussian
vrel 235± 20 km/s Gaussian
v0 235± 20 km/s Gaussian
J-factor for dSphs Log-normal [5]
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Priors nuisance parameters

DM annihilation sensitive to masses of Higgs and Z-boson.

SM

MZ 91.1876± 0.0021 GeV Gaussian LHC [12]
mh 125.09± 0.24GeV Gaussian LEP [12]
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Relative plausibility of simple theories of dark
matter



Relative plausibility of DM models

We now have

• Models, Mi: Scalar, fermion or vector DM that interacts
with SM by Z or Higgs boson

• Data, D: Planck measurement of the relic density and
failed searches for DM in direct detection, indirect
detection and colliders

• Framework for relative plausibility: with Bayesian
statistics we can calculate p(Mi | D)/p(Mj | D)

We calculated the evidence integrals with MultiNest [20–22].
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Relative plausibility of DM models

We want to find change in relative plausibility of simple DM
models in light of data.

Two models are implausible but there is no clear favourite
between the rest.
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Relative plausibility of DM models

Model Bayes factor min χ2 p-value

Real scalar h-portal 0.55 2.6 0.27
Complex scalar h-portal 0.28 2.6 0.27
Real vector h-portal 0.23 2.6 0.27
Complex vector h-portal 0.059 2.6 0.27
Majorana h-portal 0.59 2.6 0.27
Dirac h-portal 0.71 2.6 0.27

Scalar Z-portal 3× 10−14 55 1.4× 10−12
Vector Z-portal 6.8× 10−10 35 2.2× 10−8
Majorana Z-portal 1 2.6 0.27
Dirac Z-portal 0.24 2.6 0.27
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Relative plausibility of DM models

The vector Z and scalar Z portal models predicted substantial
scattering cross sections.
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Damage to simple DM models

Perhaps the failed searches for DM in direct detection
experiments damage plausibility of our simple WIMP models?

Let’s compare against an hypothetical model that predicts no
signature in DD experiments.

31/34



Damage to simple DM models

Damage to plausibility from DD

Model Present Future Neutrino floor

Real scalar h-portal 0.3 0.006 5× 10−5
Complex scalar h-portal 0.1 0.002 1× 10−5
Real vector h-portal 0.1 0.0009 9× 10−7
Complex vector h-portal 0.02 0.001 6× 10−10
Majorana h-portal 0.2 0.2 0.1
Dirac h-portal 0.2 0.1 0.1

Scalar Z-portal 1× 10−14 7× 10−73 7× 10−129
Vector Z-portal 3× 10−10 7× 10−54 2× 10−101
Majorana Z-portal 0.3 0.2 0.1
Dirac Z-portal 0.08 0.04 0.01 31/34



Damage to simple DM models

Direct detection experiments did not greatly damage the
plausibility of many of the simplest models!

Hypothetical future results from LZ, XENONnT, and PICO might
begin to damage a few models.

But fermionic models survive even once limits on the
spin-independent cross section reach the neutrino floor!
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Posteriors for the mass and couplings

The mass of scalar DM with a Higgs portal is pushed to
multi-TeV region in red or the narrow resonance region.
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Direct detection prospects

We require sensitivity for multi-TeV dark matter and/or low
cross sections — future experiment XENONnT [23] should
probe it.
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Direct detection prospects

DM is pushed into the Higgs funnel by XENONnT (but by this
point this model becomes relatively implausible).
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Conclusions

• We can compare plausibility of scientific theories with
Bayesian statistics

• Automatic Occam’s razor/penalty for fine-tuning
• I presented simple DM models as an example (see Ref. [1])
• Calculated changes in relative plausibility SM portal
models in light of data

• Some the simplest WIMP models weren’t badly damaged
by failed searches for DM

• Waning of the WIMP is premature
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