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Nutshell



Fine-tuning in the 21st century

We’ve all experienced fine-tuning.
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Fine-tuning in the 21st century

We know that showers that require fine-tuning are bad
showers.

I will show you that models that require fine-tuning are bad
models.

I will use natural = absence of fine-tuning (though be rigorous
in context of Bayesian statistics).
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Fine-tuning in the 21st century

In high-energy physics, a theory is considered
fine-tuned/unnatural if small variations in its parameters
result in dramatic changes in its predictions.

We criticise a proposed theory as fine-tuned when its
featured are adjusted to make some things equal…
[F]ine-tuning in a scientific theory is like a cry of
distress from nature, complaining that something
needs to be better explained.

Weinberg [1]

2/25



Fine-tuning in the 14th century

You’ve surely heard this before —
Occam’s razor [2]:

When you have two
competing theories that
make exactly the same
predictions, the simpler
one is the better.
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Fine-tuning in contemporary high-energy
physics



Hierarchy problem

Higgs mass is fine-tuned — hierarchy problem [3–7]:

m2 ≃ m0
2 + κM2

P.

Require fine-tuning of bare mass and loop correction ∼ M2
P

such that m2 ≪ M2
P.

Decades searching for solutions — supersymmetry [8–10],
large extra dimensions [11] and technicolor [3].
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Inflation

Flatness and horizon problems — ordinary big-bang
cosmology requires fine-tuning such that Universe is flat and
causally disconnected patches have similar temperatures.

With cosmological inflation [12], flatness and homogeneity are
generic.
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Cosmological constant

Cosmological constant requires fine-tuning [13] of bare and
corrections such that

ρ ≲ 10−121

Decades searching for solutions. Weinberg [1] states

This level of fine-tuning is intolerable, and theorists
have been working hard to find a better way to
explain why the amount of dark energy is so much
smaller than that suggested by our calculations.

Anthropics invoked [14] along the way.
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Unification

Grand unification: wouldn’t it be simpler if forces/gauge
couplings and even gravity were unified [15, 16]? Decades
spent motivating new physics/constructing models.
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Bayesian automatic Occam’s razor



Problems with Occam’s razor/fine-tuning/naturalness

• What is meant by “better”?
• What is meant by “simpler”?
• What if the competing theories make slightly different
predictions?

• Can we combine Occam’s razor with experimental data
and judge competing theories?

• Why is Occam’s razor true? Is it true?
• Why are fine-tuned theories bad? Are they bad?
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Bayesian statistics

Fortunately, Bayes’ theorem answers our questions.

Bayesian probability is a measure of plausibility [17, 18]. 0/1
represent absolute certainty. Bayes’ theorem automatically
penalises fine-tuning and rewards agreement with data.

The measure of plausibility and the rules are unique. No
choices/arbitrariness (Cox’s theorem).
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Inductive reasoning

Bayes’ theorem permits inductive as well as deductive
reasoning.

Deductive
Conclusion follows from premises. Premise: I saw a black
swan. Conclusion: not all swans are white.

Inductive
Conclusion appears more/less plausible in light of premises.
Premise: the sun has risen every day of my life. Conclusion:
the sun will rise tomorrow.

Hume’s problem of induction: is induction reliable? It worked
in the past, but that’s an inductive argument…
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Inductive reasoning

Bayes’ theorem permits inductive as well as deductive
reasoning.

In a stroke, unify arguments about scientific theories
(fine-tuning, agreement with data), and (arguably) solves
problem of induction [21].
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Bayes’ theorem

Plausibility is updated by data via Bayes’ theorem, e.g.,
plausibility of A given B:

p(A | B) =
p(B | A)

p(B)
· p(A)

Contrasts with frequentist probability — frequency with which
repeatable event occur in repeat trials.

If p(B | A)/p(B) > 1, A is more plausible in light of B.
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What do you calculate?

We want to find which model is most plausible in light of data.
The relative plausibility is called the posterior odds:

p(Mb | D)

p(Ma | D)
=

p(D | Mb)

p(D | Ma)
× p(Mb)

p(Ma)

Posterior odds = Bayes factor× Prior odds

This requires more than one model. With a single model,
p(M | D) = p(M) = 1. Plausibility/fine-tuning is relative.

Furthermore, a single evidence p(D | M) is meaningless, as it
has [1/D] dimension and dependent on parameterisation of
data. Makes no sense to say “data improbable in a model,
thus model is fine-tuned.”
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What do you calculate?

Calculate the Bayesian evidence for each model under
consideration

p(D | M) =
∫

p(D | M, p) · p(p | M)∏ dp

Probability of data given point in model (likelihood).
Probability of point given model (prior). Somewhat subjective,
though should reflect knowledge or ignorance about
parameters.

Compare the evidences in a so-called Bayes-factor:

p(D | Mb)/p(D | Ma) ∝ p(Mb | D)/p(Ma | D)

which is proportional to the posterior odds. May not agree
with frequentist methods, even with informative data [22, 23].
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Automatic Occam’s razor

We calculated the change in relative plausibility of models in
light of data. The framework was unique.

There are caveats about priors.

What more is there?! It would be re-assuring if it included an
Occam’s razor.

Note that the Bayesian evidence is a pdf of the data such that∫
p(D | M)dD = 1

Each model has a finite amount of probability mass to
spend/squander on its predictions for data.
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Why Bayesian evidence captures fine-tuning in one slide [24]

Bayesian evidence captures old-fashioned ideas about FT.
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<digression> Anthropics



Just data

The fact that you are alive, or that the Earth is habitable, is
just data that could be included when judging plausibility by
Bayesian evidences.

But it’s typically useless as more convenient to use
quantitative experimental data.

Weinberg’s celebrated “anthropic” measurement of the
cosmological constant in general relativity was just a
measurement much like any other:

knowing only that the world is older than 5000 years
and larger than Belgium would suffice to tell us that
|Λ| ≪ 1 [13]

No ad hoc “anthropic reasoning” ever required/justified
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</digression>



Caveats



Is it everything meant by Occam’s razor/fine-tuning?

Many people have ideas about fine-tuning/Occam’s
razor/naturalness that aren’t visible in Bayesian statistics.

That’s their problem — not a fault of Bayesian statistics.

Whatever they were thinking of, if it doesn’t appear in
calculations in Bayesian statistics, it wasn’t relevant to the
plausibility of a model.
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Priors

What you believe after seeing data depends on what you
believed before seeing data. Priors should reflect
knowledge/ignorance prior to experimental data.

Priors split into two pieces: prior of model, p(M) and prior for
parameters, p(p | M).

There are rules for quantifying ignorance (e.g., maximum
entropy/invariance under symmetry groups [26]).

Some open issues, but nothing fatal. Bayesian statistics “too
big to fail” — if you give up on it, the consequences (no
induction) are disastrous.
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Something else?

Could just stick with deductive logic. Don’t talk about
plausibility/fine-tuning. Ignore fine-tuning
problems/solutions — limited.

Could allow fine-tuning arguments at qualitative level —
vague, unreliable.

Could invent “pseudo” measures of plausibility. E.g.,
Barbieri-Giudice [27, 28] measure for fine-tuning in a SUSY
theory. A theory is “good” if

∆ ≡ ∂ ln MZ

∂ ln p

is “small.” No logical framework. Completely arbitrary. Cannot
be combined with experimental data. How is this reliable
knowledge/scientific?
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Calculations with real data, real models of
interest, real conclusions about physics



Hierarchy problem [29] I

Supersymmetry motivated by fact that it “solves” fine-tuning
problem associated with the weak scale in the Standard
Model.

Weak scale is measurements of e.g., Z-boson mass,
MZ ≃ 90GeV.

I calculated the Bayes factor,

p(MZ | SUSY)
p(MZ | SM)

I found that SUSY (in this case the CMSSM) is favoured by a
colossal Bayes factor in light of measurement of Z-boson
mass.
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Hierarchy problem [29] II
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Distribution of Z-boson mass, Fowlie (2014)

SM with quadratic divergences
SM without quadratic divergences
CMSSM
CMSSM after LHC 8 TeV
Observed MZ

The SM squanders probability mass at MZ ∼ MP and is punished.
Physicists’ intuition about fine-tuning/hierarchy problem was
correct.
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Digamma excess [32] I

Bayes factor needn’t only be applied in cases in which
fine-tuning is suspected — it is a general rule for judging
models in light of data.

A recent “anomaly” from the LHC was the infamous digamma
excess [31]. It resulted in about 500 theoretical studies
between December 2015 and August 2016 (when it was
refuted).

22/25



Digamma excess [32] II

An excess of events at 750GeV that ostensibly indicated a new
particle m ≈ 750GeV.
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Digamma excess [32] III

Many people liked to speculate about the “odds” of a
digamma particle. No one calculated. Once again, I calculated
a Bayes factor,

p(D | SM + digamma)
p(D | SM)

Found that it is ≲ 10 at the peak of the excitement. Given that
it wasn’t that interesting prior to the data, an increase of
plausibility of 10 isn’t much.
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Summary



Summary

• Fine-tuning/naturalness extremely important in
high-energy physics.

• Theories should be judged by calculating their relative
plausibility in light of data in Bayesian statistics.

• It automatically includes an effect that can identified with
an Occam’s razor/penalty for fine-tuning/unnaturalness.

• Applied it in several cases, including supersymmetric,
non-supersymmetric models, and the diphoton anomaly.

• Intuition about fine-tuning was correct, but the formalism
was absent/faulty. Bayesian statistics corrects that.
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Questions?
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