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Overview

1. Frequentist methods

2. Bayesian

3. Paradoxes and compromises
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Testing and estimation

Roughly speaking, statistical tasks separate into

1. Model testing or comparison

2. Estimating or inferring the model’s parameters

I will focus on first. In my opinion, first we should establish
whether a phenomena exists, and then infer its parameters or
properties.
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Testing

Je�reys and Fisher agree!

Je�reys 1939

“ [I]n what circumstances do observations support a change of
the form of the law itself? This question is really logically prior to

the estimation of the parameters, since the estimation problem
presupposes that the parameters are relevant”Fisher 1925

“ It is a useful preliminary before making a statistical estimate
. . . to test if there is anything to justify estimation at all”
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Discoveries!

Classic example. Higgs discovery in 2012.

How do we judge when the data indicates the presence of a new
particle or phenomena?
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Discoveries!

Di-photon spectrum contains a resonance (Aad et al. 2012).

Discovery was announced based on a particular choice of
statistical methodology.
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Methodology

We need a statistical methodology to judge evidence for a
discovery. In the time available, let’s consider

1. Frequentist; see e.g., Lyons 1989; Cowan 1998; James 2006;
Behnke et al. 2013. Two schools

• Error control
• Evidential

2. Bayesian; see e.g., D’Agostini 2003; Gregory 2005; Sivia and
Skilling 2006; Tro�a 2008; Linden, Dose, and Toussaint 2014;
Bailer-Jones 2017
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Likelihood

Methods typically require at least the likelihood (see e.g., Cousins
2020)

L(Θ) = p(D |M,Θ)

This tells us the probability (density) of the observed data, D, given
a particular model, M, and choice of parameters.

This is a function of the model’s parameters, Θ, for fixed, observed
data.



Frequentist methods
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P-values

P-value (Wasserstein and Lazar 2016)
The p-value, p, is the probability of observing data as or more
extreme than that observed, given the null hypothesis, H0, i.e.,

p = P(λ ≥ λObserved |H0)

where λ is a test-statistic that summarises the data and defines
extremeness, and H0 specifies the distribution of λ

See Demortier 2008 for discussion about composite null
hypotheses that don’t uniquely specify the distribution of λ.

Test-statistic o�en based on (profiled) likelihood ratio (Neyman
and Pearson 1933)
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P-values

Thus p is a tail probability.
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Thus p is uniformly distributed under H0 (or dominated by
uniform in discrete se�ings or composite null)
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Z-values

In particle physics, it’s common to translate p-values into Z -values.
5σ corresponds to about p = 10−7. This is just a convention
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through the equation

Z = Φ−1(1− p)
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Interpreting p-values

P-values are popular in particle physics and elsewhere. Two
possibly contradictory interpretations (Hubbard and Bayarri 2003):

• P is a measure of evidence against H0 (Fisher 1925): small p⇒
H0 implausible. See e.g., Hubbard and Lindsay 2008; Schervish
1996; Berger and Sellke 1987; Senn 2001; Murtaugh 2014

• P is a means to control error rate (Neyman and Pearson 1933):
if we reject null when p-value ≤ 0.05, for example, becomes
error theoretic approach with type 1 error rate α = 0.05
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Controlling type-1 error rate

The p-value enables us to control type-1 error rate because it is
uniformly distributed under the null
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Placing a threshold p < α controls the type-one error rate to be α
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Example from high-energy physics
Original artwork Viktor Beekman and concepts Eric-Jan Wagenmakers

In high-energy physics, we want to discover new phenomena and
new particles. Perform null hypothesis test:

• H0 — Standard Model (SM) backgrounds only

• H1 — SM + new physics, e.g. Higgs boson or supersymmetric
particles

https://www.bayesianspectacles.org/library/
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Example from high-energy physics

For a discovery we conventionally require a tiny global p-value of

p . 10−7 (5σ)

i.e., α ' 10−7 (Lyons 2013). Dual interpretation: threshold in
evidence — extraordinary claims require extraordinary evidence —
and imposes a 10−7 type-1 error rate.
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Example from high-energy physics

Discovery of Higgs boson announced by ATLAS and CMS once
significance greater than 5σ.

Some scares — e.g., 2015 diphoton excess (Strumia 2016) — but so
far 5σ criterion prevented false discoveries (though think about
flavor anomalies).
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Misconceptions

Misconceptions galore by public and scientists, see e.g., Goodman
2008; Greenland et al. 2016

1. P is not probability of null hypothesis

2. P is not the probability that the data were produced by
chance alone

3. P is not an error rate

Wagenmakers and al 2017

“ The fact that academics don’t know what p means is a
symptom of the fact that p doesn’t tell anything worth knowing”

Though see Murtaugh 2014; Lakens et al. 2018; Cousins 2018;
Lakens 2021; Mayo 2018.



Bayesian
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Bayes factors

Forget long-run errors rates and data we don’t have. Compute the
change in plausibility of models in light of the data we have

• With this and priors for the models, we could compute the
posterior plausibility of each model

• If you like, you can compute the probability that you are
making an error in the case at hand (cf. long-run error rates
that are independent of the observed data)

• We just apply probability theory to the problem (Je�reys
1939). Simple in theory; in practice there are di�iculties.
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Bayes factors

The Bayes factor (Kass and Ra�ery 1995) relates the relative
plausibility of two models a�er data to their relative plausibility
before data;

Posterior odds = Bayes factor × Prior odds

where

Bayes factor =
p(Observed data |Model a)
p(Observed data |Model b)

A nice result — by applying laws of probability, we see that models
should be compared by nothing other than their ability to predict
the observed data.
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Bayes factors
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Bayesian evidence

The factors in the ratio are Bayesian evidences

Z ≡ p(D |M) =
∫

ΩΘ
L(Θ)π(Θ) dΘ,

where D is the observed data, L(Θ) = p(D |Θ,M) is the
likelihood and π(Θ) = P(Θ |M) is our prior, and Θ are the
model’s parameters.

The prior describes what we knew about the parameters before
seeing the data

The evidence is the likelihood averaged over the prior — the
averaging penalises fine-tuned models



21/48

Sensitivity to priors

Evidences are the likelihoods averaged over priors.

Many consider the resulting dependence of the Bayes factor on
the priors to be a major and perhaps fatal problem; see e.g., Berger
and Pericchi 2001; Cousins 2008

• No priors, no predictions. I need to compare your model’s
predictions with data. If you don’t tell the plausible
parameters, how am I to know what it predicts?

• Sensitive to arbitrary choices. If the inference changes
dramatically within a class of reasonable priors, we can’t draw
reliable conclusions.
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Sensitivity to priors

Evidences are the likelihoods averaged over priors.

Many consider the resulting dependence of the Bayes factor on
the priors to be a major and perhaps fatal problem; see e.g., Berger
and Pericchi 2001; Cousins 2008

Paraphrasing Hill 1975

“ the lack of a concrete theory for choosing priors no more
implies that one should not use Bayesian statistics than does the
lack of a theory that tells us the right price to pay for groceries

implies we should not use money”
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Subjective & Objective

There are di�erent approaches to constructing priors, leading to
di�erent flavors of Bayesian inference

Subjective
Priors reflect state of knowledge and could be constructed by
e.g., consulting experts (see e.g., Goldstein 2006; Mikkola et al.
2021)

Dictated by state of knowledge
Priors could be dictated by e.g., a symmetry (Jaynes 1968)

Formal rules for selecting priors
Construct priors that e.g., maximise what we expect to learn
about a model’s parameters (Kass and Wasserman 1996; Con-
sonni et al. 2018)
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Occam’s razor

Evidence automatic Occam razor (MacKay 1992; Je�erys and
Berger 1992)
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Example from cosmology

Best models of inflation a�er Planck 2013 (Martin et al. 2014;
Martin, Ringeval, and Vennin 2014)

• Collate about 200 models of slow-roll inflation

• Formulate suitable priors

• Formulate likelihoods for Planck 2013 data

• Compute Bayesian evidences through a Monte Carlo
integration method
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What’s le�?

About 30 models were disfavoured and about 70 strongly so.

Schwarz-Terrero-Escalante Classification:
1 1-2 2 2-3 3 1-2-3 Displayed Evidences: 193

Bayesian Evidences ln(E/EHI) and ln(Lmax/EHI)

J.Martin, C.Ringeval, R.Trotta, V.Vennin
ASPIC project
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No stand-out preferred model.



Paradoxes and compromises
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Likelihood principle

Originated by considering stopping rules (Barnard 1949). Proven
by Birnbaum 1962

Berger and Wolpert 1988

“ all evidence, which is obtained from an experiment, about
an unknown quantity θ, is contained in the likelihood function of

θ for the given data [L(θ)]”
• Forbids evidential interpretations of frequentist statistics and

p-values — since they depend on considering data other than
that observed

• Implicitly obeyed by Bayesian statistics (though violated by
reference priors)



27/48

Intuition for likelihood principle

Pra� 1962

“ An engineer draws a random sample of electron tubes and
measures the plate voltage under certain conditions with a very

accurate volt-meter . . .

A statistician examines the measurements, which look normally
distributed and vary from 75 to 99 volts with a mean of 87 and a

standard deviation of 4 . . .”
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Intuition for likelihood principle

Pra� 1962

“ Later he visits the engineer’s laboratory, and notices that the
volt meter used reads only as far as 100, so the population appears

to be “censored.” This necessitates a new analysis, if the
statistician is orthodox.”
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Intuition for likelihood principle

Pra� 1962

“ However, the engineer says he has another meter, equally
accurate and reading to 1000 volts, which he would have used if
any voltage had been over 100. This is a relief to the orthodox
statistician, because it means the population was e�ectively

uncensored a�er all.”
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Intuition for likelihood principle

Pra� 1962

“ But the next day the engineer telephones and says: “I just
discovered my high-range volt-meter was not working the day I

did the experiment you analyzed for me.” The statistician
ascertains that the engineer would not have held up the

experiment until the meter was fixed, and informs him that a new
analysis will be required. The engineer is astounded.”
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Intuition for likelihood principle

Pra� 1962

“ .. . “Next you’ll be asking me about my oscilloscope.””
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Status of likelihood principle

At the time, considered profound by some though not universally
accepted

Savage 1962

“ Without any intent to speak with exaggeration or
rhetorically, it seems to me that this is really a historic occasion.”

Over time limited practical impact: ignored by Bayesian because
it’s automatically satisfied; ignored by frequentists because it’s
automatically violated.
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Posterior of null versus p

Of course,
Posterior of null 6= p-value

However, well-known that typically

Posterior of null� p-value

for broad classes of priors. P typically overstates the evidence
against the null
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Posterior of null versus p

Bounds
Famous bound (Vovk 1993; Sellke, Bayarri, and Berger 2001) that
under mild assumptions

B10 ≤
1

−ep ln p

With equal priors for null and alternative, p = 0.05 corresponds to
at least about 30% posterior probability of the null (see e.g., Berger
and Sellke 1987; Berger and Delampady 1987; Benjamin et al. 2018)
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Examples from high-energy physics

I see this in high-energy physics. B for some Z (read papers for
discussion of priors etc)

• Higgs discovery — posterior of null about 100 times greater
than p (Fowlie 2019)

• ATLAS 2015 diphoton — Z = 2.1σ and B ' 7 (Fowlie 2017)

• DAMPE — Z = 2.3σ and B ' 2 (Fowlie 2018)

• 2020 XENON — Z = 3.5σ and B ' 3 (Athron et al. 2021)
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Je�reys-Lindley paradox

• Folk theorem that di�erences between Bayesian and
frequentist methods vanish once su�icient data collected

• Je�reys-Lindley paradox (Je�reys 1939; Lindley 1957)
destroyed that misconception

See e.g., Robert 2014; Cousins 2017; Wagenmakers and Ly 2021 for
reviews.
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Je�reys-Lindley paradox

• Take n measurements of an unknown mean, θ, and test
whether θ = 0

• The p-value depends on the t-statistic

t =
√

nx̄
σ

through p = 2(1−Φ(t))

• The Bayes factor in favour of θ = 0, though, depends
explicitly on n and t ,

B ≈ e−
1
2 t2
√

n√
2πσ

Thus for fixed (and e.g., tiny) p, B may favour null by arbitrary
factor by su�iciently large n!
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Blame

• No blame — Bayesian and frequentist testing answer di�erent
questions. Nevertheless, paradoxes help us understand
foundations e.g., ladder paradox, Maxwell’s demon, and
Schrodinger’s cat

• Blame p — evidence should depend on n, p-value
contraindicated

• Blame fixed significance level — α should be a function of n

• Blame B — cannot be right to accept null even when p
arbitrarily tiny

• Blame null — testing point null hypothesis (i.e., testing θ = 0)
problematic

• Blame se�ing — fixing t but increasing n unrealistic (Fowlie
2020)
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Statistical cocktail

What if we could combine

Evidential aspect of Bayes + Error theoretic aspect of frequentist

Would we obtain a wonderful resolution? or something that
everyone hated? Two contentious tastes that taste contentious
together?
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Good’s compromise

A compromise (Good 1957; Good 1961; Good 1992)
• Compute B as though you were a Bayesian
• Compute p as though you were a frequentist using B as a

test-statistic!

p = P(B ≥ BObserved |H0)

• Report B and p. B for evidence, p for error control

What if B ≫ 1 but p insignificant or vice-versa?
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Good’s compromise

Good 1992

“ [T]he pure Bayesian throws away the use of P-values, naive
or otherwise. But because clients o�en want answers having the

veneer of objectivity, the use of P-values is somewhat justifiable”Good 1992

“ I don’t think epistemic probabilities have sharp values.
When they are very vague, you might have to fall back either on

P-values”Good 1992

“ [Results from significance test] correct in the long run in a
certain proportion of cases, thus protecting the statistician’s rear

end to some extent, but the client’s less so”
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Likelihood ratios and Bayes factors

Good 1992

“ the ratio of maximum likelihoods can be regarded as a (very
poor) approximation to a Bayes factor . . . Thus Neyman and

Pearson perhaps were unconscious Bayes/non-Bayes
compromisers”

Indeed, the Neyman-Pearson lemma shows that Bayes factor most
powerful test-statistic for simple hypotheses.

For non-simple ones, the Bayes factor most expected power
(Zhang 2016; Fowlie 2021)
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Frequentist properties of Bayes factors

Kerridge’s theorem
Kerridge’s simple theorem demonstrates that (Kerridge 1963)

P(B10 ≥ t |H0) ≤ 1/t

That is, the chance that the Bayes factor favours H1 by at least
t when H0 is true must be less than 1/t .

This enables Bayes factors to be used in so-called universal
inference (Wasserman, Ramdas, and Balakrishnan 2020). Bayes
factors many convenient frequentist-style properties.

See also Berger 2003; Bayarri and Berger 2004; Bayarri et al. 2016
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Turing’s theorems and Gibbs’ inequality

Turing via Good (see Good 1965; Good 1960)
Expectation of logarithm of Bayes factor indictes correct model.

〈logB10〉1 ≥ 0

〈logB10〉0 ≤ 0

Identical to Gibbs’ inequality.

Intuitive — data on average must indicate correct model through
logarithm of Bayes factor (weight of evidence) or at worst be
irrelevant

See also Etz and Wagenmakers 2017 for some history of Turing’s
involvement here.
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Use in cosmology

Curiously, this compromise recently used in cosmology in Joachimi
et al. 2021

• Tension between measurements of the Hubble constant
(Verde, Treu, and Riess 2019)

• Tension quantified using Bayesian evidences or statistics
involving them

• What about their frequentist properties?
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Bayes factors by chance

Chances of obtaining such a sizeable Bayes factor (105) under
replication, assuming indicated model, could be small (5%)
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P (B10 > 105|H1) ' 5%

P (B10 < 1|H1) ' 7%

Could even be appreciable chance of Bayes factor favouring a
di�erent model (7%). Does it ma�er?
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Bayes factors by chance

Verde, Treu, and Riess 2019 consider chances of obtaining such a
sizeable Bayes factor were the indicated model and some
estimator of its parameters. Similar to

P(B ≥ BObs. |D,H1)

Considering this reduces tension between discrepant Hubble
measurements. Further suggest reducing noise in evidence
estimate by compressing data.
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Computational challenges

Bayesian and frequentist techniques pose computational
challenges

Bayesian — integration
The evidence is a challenging multi-dimensional integral

Z ≡ p(D |M) =
∫

ΩΘ
L(Θ)π(Θ) dΘ,

Usually impossible analytically.
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Computational challenges

Bayesian and frequentist techniques pose computational
challenges

P-values — compression
We need to compute p as small as about 10−7 through

p = P(λ ≥ λObserved |H0)

The tiny region of sampling space for which λ ≥ λObserved
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Common challenge

In fact, these are the same problem — compression

• Compression from the whole sampling space to the tiny
region corresponding to p

• Compression from the whole prior to the region of significant
likelihood that contributes to the integral
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Random sampling

This won’t be e�icient

Estimate red area by random sampling
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Nested sampling

Compress through a path of distributions

Build a path of distributions

Path connects whole space to p-value

Solution — path sampling
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Nested sampling

Nested sampling (Skilling 2006) estimates compression along path
statistically. The gist:

• Draw n live points

• Keep half with greatest test-statistic

• We just compressed by 1/2!

This enables NS to estimate compression required for Bayesian
computation and p-values (Fowlie, Hoof, and Handley 2022)
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Summary

• Two motivations and interpretations of p-value: error control
and evidence

• La�er lacks foundation

• Bayes factors quantify change in plausibility, but sensitive to
priors

• Paradoxes about evidence implied by them and a�empts at
resolution

• Despite century of debate, ma�ers remain unse�led!

• Nested sampling rises to universal computational challenge of
compression



Backup



Estimation

Though see e.g., Cumming 2013 for disagreement.

Cumming 2013

“ Suppose you read in the news that “support for Proposition
X is 53%, in a poll with an error margin of 2%.” . . .more

informative than stating that support is “statistically significantly
greater than 50%, p < .01.””

Nevertheless, here we focus on testing.



Le�ing the data speak for itself

Gould 1981

“ inanimate data can never speak for themselves, and we
always bring to bear some conceptual framework, either intuitive

and ill-formed, or tightly-formed and structured, to the task of
investigation, analysis and interpretation”Tukey et al. 1977

“ No body of data tells us all we need to know about its own
analysis”Jaynes 2003

“ The data cannot speak for themselves; and they never have,
in any real problem of inference”



Choice of test statistic

Conventionally based on profiled likelihood ratio

λ =
p
(
D | Θ̂1,H1

)
p
(
D | Θ̂0,H0

)
where Θ̂0 are the best-fit parameters under H0 etc and D are the
data.

Optimal in simple cases (Neyman and Pearson 1933) and some
slightly non-simple cases (Karlin-Rubin theorem).

Won’t dwell on choice of test-statistic in this talk or how to compute
it from a given dataset, which could involve multi-dimensional
optimisation.



Objectivity

Gelman and Robert 2013

“ Strain on the gnat of prior while swallowing the camel that
is the likelihood”

The p-value depends on researcher’s entire analysis plan and
intentions (Wagenmakers 2007)

• How many tests did they perform?

• What would they have done were the data di�erent?

• Why did they stop collecting data?

May be specified ahead of time e.g., registered reports gaining
popularity in other fields (Kiyonaga and Scimeca 2019)



Backlash and defence

Ioannidis 2005 argued that most research findings were false

The subsequent replication crisis led to doubts about p-values,
thresholds and testing (Benjamin et al. 2018; McShane et al. 2019).

Though see Murtaugh 2014; Lakens et al. 2018; Cousins 2018;
Lakens 2021; Mayo 2018 for defence of p. Renaissance in Mayo’s
severe testing framework (Mayo 2018), though see Gelman et al.
2019



Is this a Bayesian approach?

Dispute about whether Bayes factors belong in Bayesian paradigm
(Gelman and Shalizi 2013; Robert 2016)

Robert 2016

“ I see [the Bayes factor] as a child of its time . . .Bayesian
model comparison should abstain from automated and hard

decision making. Looking at the marginal likelihood of a model as
evidence makes it harder to refrain from se�ing decision bounds

when compared with returning a posterior distribution”



Je�reys-Lindley paradox

For a fixed p but increasing n, the likelihood function increasingly
centred at θ = 0 even though discrepancy from θ = 0 is fixed

0 1 2 3 4 5
θ

L(
θ)

σ = 1/
√

n, λ = 3
n = 1
n = 10
n = 100
n = 500

Fixed t but changing n is arguably change of state of knowledge of
origin of t (Fowlie 2020)
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