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Section 1

Fine tuning & physics beyond the Standard Model



The Standard Model

▶ The Standard Model is a theory in particle physics

▶ Describes all known particles and three interactions — the electromagnetic, weak,
and strong nuclear interactions

▶ Remarkably successful in explaining and predicting the behavior of subatomic
particles — exquisite agreement with experimental data

▶ Cannot be the whole story — what lies beyond the Standard Model?

Theorists and experimentalists are searching for clues
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The Standard Model

u d c s t b Matter — quarks

e νe µ νµ τ ντ Matter — leptons

γ g W Z Force carriers

H Origin of mass — Higgs
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Beyond the Standard Model

u d c s t b ? Matter — quarks

e νe µ νµ τ ντ ? Matter — leptons

γ g W Z ? Force carriers

H ? Origin of mass — Higgs

? ? ? ? ? ? ? New Physics
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Experimental discoveries

Classic example. Higgs discovery in 2012.

How do we judge when the data indicates the presence of a new particle or
phenomena?
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Theoretical hints

There are theoretical motivations for new particles and phenomena, e.g.,

▶ The hierarchy problem

▶ The strong CP problem

▶ Cosmological constant problem

▶ Horizon problem

▶ Flatness problem

▶ Grand Unification

These hints are motivated by ideas about fine tuning.

How do we judge whether these arguments are reliable?
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Fine-tuning in everyday life

We know that showers that require fine-tuning are bad showers!
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Fine-tuning in physics

In high-energy physics, a theory is considered fine-tuned or unnatural if small
variations in its parameters result in dramatic changes in its predictions. For reviews,
see ref. [1–3]

“Fine-tuning in a scientific theory is like a cry of dis-
tress from nature, complaining that something needs
to be better explained” [4]
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Hierarchy problem

The Standard Model Higgs mass parameter must be fine tuned. This is the hierarchy
problem [5–9]

Requires fine-tuning of bare mass,m0
2, and quantum correctionsM2
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Hierarchy problem

The Standard Model Higgs mass parameter must be fine tuned. This is the hierarchy
problem [5–9]

m2 ≃ m0
2 +M2

1002 ≃ m2
0 + (1019)2

Requires fine-tuning of bare mass,m0
2, and quantum correctionsM2
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Solutions

▶ Since the 1980s, model-building in high-energy physics focussed on solving the
hierachy problem

▶ In other words, building theories that didn’t need fine-tuning

▶ All attempts to do so introduce new particles with masses just above 100GeV

▶ New physics that could be observed in particle colliders

▶ Most popular models were supersymmetry (SUSY), including supersymmetric
grand unified theories (GUTs)
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Cosmological constant

There is a similar problem with a so-called cosmological constant, ρ, in cosmology.

This parameter requires fine-tuning so that ρ ≲ 10−121 but corrections from known
physics are at least 60 orders of magnitude greater [10]

“This level offine-tuning is intolerable, and theorists have
been working hard to find a better way to explain why the
amount of dark energy is so much smaller than that sug-
gested by our calculations” [4]
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History of fine-tuning

▶ 1934—Weisskopf’s calculation of
electron self-energy [11]

▶ 1938— Dirac’s large numbers
hypothesis [12]

▶ 1973—Wilson understanding of
effective field theory [13]

▶ 1974— Gaillard and Lee predict charm
quark mass [14]

▶ 1988—Weinberg makes anthropic
argument [15]
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Popularity of fine-tuning — data from INSPIRE

▶ 1974— first hit by Georgi [16]

▶ 1979— ’t Hooft [17]

▶ 1987— Barbieri-Giudice measure [18]

▶ 2000— fine-tuning at LEP [19]

▶ 2006— pre-LHC forecasts

▶ 2010 onward— LHC-era
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Measures of fine-tuning

Fine-tuning of electroweak scale usually quantified by sensitivity measure [18, 20]

Sensitivity =
Change in output
Change in input

E.g. Barbieri-Giudice (BG)

∆BG =

∣∣∣∣d lnMZ

d ln ai

∣∣∣∣ = ∣∣∣∣ aiMZ

dMZ

dai

∣∣∣∣
What’s the connection between these measures and plausible models?
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Fine-tuning at LEP

Fine-tuning price of LEP [19, 21–23] — allowed points show ∆BG ≳ 100
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Fine-tuning at the LHC

Fine-tuning price of the LHC [24, 25] — allowed points show ∆BG ≳ 1000, except in
focus-point region

There are, thus, now criticisms and doubts about fine-tuning [26]
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Section 2

Foundations



Let the data speak for itself

“inanimate data can never speak for themselves, andwe always bring to bear some
conceptual framework, either intuitive and ill-formed, or tightly-formed and struc-
tured, to the task of investigation, analysis and interpretation” [27]

“No body of data tells us all we need to know about its own analysis” [28]

“The data cannot speak for themselves; and they never have, in any real problem of
inference” [29]
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Methodology

We need a statistical methodology to judge evidence. In the time available, let’s
consider

1. Frequentist; see e.g., [30–33]. Two schools
▶ Error control
▶ Evidential

2. Bayesian; see e.g., [34–39]

18



Testing and estimation

Roughly speaking, statistical tasks separate into

1. Model testing or comparison

2. Estimating or inferring the model’s parameters

I will focus on first. In my opinion, first we should establish whether a phenomena
exists, and then infer its parameters or properties.
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Testing

Jeffreys and Fisher agree!

“[I]n what circumstances do observations support a change of the form of the law
itself? This question is really logically prior to the estimation of the parameters,
since the estimation problem presupposes that the parameters are relevant” [40]

“It is a useful preliminary before making a statistical estimate …to test if there is
anything to justify estimation at all” [41]
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Likelihood

Methods typically require at least the likelihood (see e.g., [42])

L(θ) = p(D |M, θ)

This tells us the probability (density) of the observed data, D, given a particular model,
M, and choice of parameters.

This is a function of the model’s parameters, θ, for fixed, observed data.
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P-values

P-value [43]
The p-value, p, is the probability of observing data as or more extreme than
that observed, given the null hypothesis, H0, i.e.,

p = P(λ ≥ λObserved |H0)

where λ is a test-statistic that summarises the data and defines
extremeness, and H0 specifies the distribution of λ
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P-values

Thus p is a tail probability.
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Thus p is uniformly distributed under H0 (or dominated by uniform in discrete settings
or composite null)
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Z-values

In particle physics, it’s common to translate p-values into Z-values. 5σ corresponds to
about p = 10−7. This is just a convention
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through the equation Z = Φ−1(1− p)
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Interpreting p-values

P-values are popular in particle physics and elsewhere. Two possibly contradictory
interpretations [44]:

▶ P is ameasure of evidence against H0 [41]: small p⇒ H0 implausible. See e.g.,
[45–49]

▶ P is ameans to control error rate [50]: if we reject null when p-value ≤ 0.05, for
example, becomes error theoretic approach with type 1 error rate α = 0.05
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Controlling type-1 error rate

The p-value enables us to control type-1 error rate because it is uniformly distributed
under the null
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Placing a threshold p < α controls the type-one error rate to be α
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Example from high-energy physics

Original artwork Viktor Beekman and concepts Eric-Jan Wagenmakers

In high-energy physics, we want to discover new phenomena and new particles.
Perform null hypothesis test:

▶ H0 — Standard Model (SM) backgrounds only
▶ H1 — SM + new physics, e.g. Higgs boson or supersymmetric particles
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Example from high-energy physics

For a discovery we conventionally require a tiny global p-value of

p ≲ 10−7 (5σ)

i.e., α ≃ 10−7 [51]. Dual interpretation: threshold in evidence — extraordinary claims
require extraordinary evidence — and imposes a 10−7 type-1 error rate.
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No penalty for fine-tuning here

However we interpret it, there is no penalty for fine-tuning in a p-value.

The p-value conditions on the model,

p = P(λ ≥ λObserved |H0)

and doesn’t care about whether that model was fine-tuned.

Let’s try something else.
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Bayesian inference

Forget long-run errors rates and data we don’t have. Compute the change in plausibility of
models in light of the data we have

p(A | B) = p(B |A)
p(B)

· p(A)

▶ We just apply probability theory to the problem [40]
▶ We could compute the relative change in plausibility of each model
▶ Simple in theory; in practice there are difficulties
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Bayes factors

The Bayes factor [52] relates the relative plausibility of two models after data to their
relative plausibility before data;

Posterior odds = Bayes factor × Prior odds

where

Bayes factor =
p(Observed data |Model a)
p(Observed data |Model b)

By applying laws of probability, we see that models should be compared by nothing
other than their ability to predict the observed data.
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Bayes factors
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Bayesian evidence

The factors in the ratio are Bayesian evidences

Z ≡ p(D |M) =
∫

L(θ)π(θ) dθ,

where D is the observed data, L(θ) = p(D | θ,M) is the likelihood and π(θ) = P(θ |M) is
our prior, and θ are the model’s parameters.

The prior describes what we knew about the parameters before seeing the data

The evidence is the likelihood averaged over the prior — the averaging penalises
fine-tuned models
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Sensitivity to priors

Evidences are the likelihoods averaged over priors.

Many consider the resulting dependence of the Bayes factor on the priors to be a major
and perhaps fatal problem; see e.g., [53, 54]

▶ No priors, no predictions. I need to compare your model’s predictions with data. If
you don’t tell the plausible parameters, how am I to know what it predicts?

▶ Sensitive to arbitrary choices. If the inference changes dramatically within a class
of reasonable priors, we can’t draw reliable conclusions.
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Sensitivity to priors

Evidences are the likelihoods averaged over priors.

Many consider the resulting dependence of the Bayes factor on the priors to be a major
and perhaps fatal problem; see e.g., [53, 54]

“the lack of a concrete theory for choosing priors no more implies that one should
not use Bayesian statistics thandoes the lack of a theory that tells us the right price
to pay for groceries implies we should not use money” [Paraphrasing Hill 1975]
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Subjective & Objective

There are different approaches to constructing priors, leading to different flavors of
Bayesian inference

Subjective
Priors reflect state of knowledge and could be constructed by e.g., consulting experts
(see e.g., [55, 56])

Dictated by state of knowledge
Priors could be dictated by e.g., a symmetry [57]

Formal rules for selecting priors
Construct priors that e.g., maximise what we expect to learn about a model’s
parameters [58, 59]
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Occam’s razor

The Bayesian evidence includes an automatic Occam’s razor [60, 61]!
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Could this justify fine-tuning arguments in physics?
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Information theory

Bayesian inference is closely connected to information theory.

In particular, the Kullback-Leibler (KL) divergence between the prior and the
posterior [62]

DKL ≡
∫

p(θ |D) ln
[
p(θ |D)

π(θ)

]
dθ

is a measure of the information learned about a parameter [63]
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Section 3

Recent developments in fine-tuning



Statistical interpretation of fine-tuning

Theorist began to recognize that fine-tuning connected to probability of
cancellations [64–69] and statistical inference [70–81]

Independently, we recently introduced the Bayes factor surface [82]
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Statistical interpretation of fine-tuning

Theorist began to recognize that fine-tuning connected to probability of
cancellations [64–69] and statistical inference [70–81]

Independently, we recently introduced the Bayes factor surface [82]

This shows the change in plausibility of a model as a function of that model’s
parameters relative to a reference model

B(θ) =
p(D |M, θ)

p(D |M0)

This is a new way to understand the impact of experimental measurements; see
ref. [83–87] for recent related works in other contexts
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Fine-tuning and Bayes factor surface

We found a link between the BG measure, statistics, and information theory. Consider
the hierarchy problem and

▶ A model with parameters θ and ϕ that predicts Higgs mass parameter
▶ Exchange ϕ for the measured Higgs mass parameter
▶ Compare against a model with the Higgs mass parameter as an input parameter

B(θ) = e△DKL = ∆BG

Bayes factor surface = Relative information = BG fine-tuning measure

… for the parameter that was exchanged for the Higgs mass parameter
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Interpretations of BG measure

▶ Statistical— the BG fine-tuning measure shows the Bayes factor surface versus an
untuned model —measures the change in plausibility of a model relative to an
untuned model

▶ Information-theoretic— the BG fine-tuning measure shows the compression
versus an untuned model —measures the exponential of the extra information,
measured in nats, relative to an untuned model that you must supply about a
parameter to fine-tune it
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Section 4

Example



CMSSM/mSUGRA

This is a popular model based on symmetry called supersymmetry

It introduces a supersymmetric mirror world. Cancellations between quantum
corrections from the new particles alleivatiate the hierachy problem
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Supersymmetric Mirror world

u d c s t b

e νe µ νµ τ ντ

γ g W Z

H

Standard Model Supersymmetric mirror world

ũd̃c̃s̃t̃b̃

ẽν̃eµ̃ν̃µτ̃ν̃τ

γ̃g̃W̃Z̃

H̃
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CMSSM/mSUGRA
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The traditional BG fine-tuning measure is
equivalent to

▶ Bayes factor surface relative to untuned model
— CMSSM points disfavored by more than factor
300

▶ Extra information that must be specified about
a parameter — at least 6 extra bits of
information required about the µ-parameter

… everywhere except in the narrow focus point strip where ∆BG ≤ 10
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CMSSM/mSUGRA
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The Bayes factor surface for themh ≃ 125GeV
Higgs mass measurement

▶ Computed relative to a reference model —
model that predicts mh = 125GeV with no tuning

▶ Requiresm0 ≫ TeV andm1/2 ≫ TeV — except
in narrow focus-point

How can we combine the Higgs mass measurement with the BG measure?
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CMSSM/mSUGRA
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Bayes factor surfaces from Z and Higgs mass
measurements can be multipied

▶ The Z and Higgs mass measurements select
narrow focus-point strip — disfavoured, but only
by B ≤ 10

▶ … and rule out other choices — disfavored by at
least B > 100

The BG measure should not be thought of as a χ2, but as a Bayes factor
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Conclusions

▶ Fine-tuning a “cry of distress from Nature” that motivates new physics

▶ Doubts raised about fine-tuning — arbitrariness, lack of logical foundation &
negative results from LEP and LHC

▶ We found precise interpretations of the fine-tuning measure

— Statistical — measures the change in plausibility of a model relative to an
untuned model

— Information-theoretic — measures the extra information that you must
supply about a parameter

▶ Fine-tuning thus a legitimate principle and guide for new physics
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