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Summary of SUSY

* Supersymmetry links fermions with
bosons!

* Suspersymmetrize SM, by adding
parficles with spins differing by .

* Quarks (2) are partnered with scalar
quarks, squarks (0) etc.
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* Need enlarged Higgs sector (2 Higgs
doublets).

* After EWSB, gauginos and Higgsinos mix
in neutralinos and charginos.




Summary of CMSSM

SUSY is broken, but general breaking
has ~> 100 free parameters.

CMSSM: Four free continuous
parameters:

MO - universal scalar mass
111 /2 = universal gaugino mass

AO = universal trilinear

tan B = the ratio of the two Higgs vevs

These are Lagrangian parameters
defined at the GUT scale.

Approximate mass relatfions:
Neutralino-1: my, ~ 0.4 X mq /o
Neutralino-2: My, ~ 0.8 X mq 7

Gluino: Mg ~ 2.7 X 1My /2

Stau-1:  msz ~ \/0.15 X m%/z + m3

Masses calculated at SUSY scale (~EW).



CMSSM is (was?) pretty appealing...

Solves hierarchy problem between Planck and EW scales (stabilises Higgs sector).
Radiative top loops cancel with new stop loops.

If the lightest neutralino is the lightest SUSY particle, it is a WIMP; explains dark matter.

Unification of gauge couplings (dominantly through extended Higgs sector).

Explains anomalous magnetic moment of muon, with exfra neutralino/smuon or
chargino/muon-sneutrino loops.

Links with gravity.

“Predicts" heavy top quark (big Yukawa required for REWSB).



CMSSM theorist after LHC searches...

Failed SUSY searches (ATLAS & CMS @
A.4/f@h.

* "Discovery” 125 GeV Higgs (which is heavy
for the CMSSM, forthcoming).

* Constraints on flavour physics.
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Testing the CMSSM

* CMSSM has a large phase space (m0, m12, AQ, tan beta) with rich and varied
phenomenology.

* Calculate CMSSM predictions for physical observables (Higgs mass, relic density, g-2 etc) at a
given parameter point with publically available tools.

* Compare those predictions in with experiments, including the latest SUSY searches and Higgs
result!

* Find the Bayesian posterior credible regions of the CMSSM's parameter space.

* i.e. We test the CMSSM against all experiments.



Bayesian Statistics

* We consider posterior probability, the probability density of the CMSSM's phase
space given the experimental data.

* cf. Frequentist statistics, in which one considers probability of data given the theory.

Posterior is proportional to the likelihood times the prior (Bayes' theorem):

p(%|d)oc L(d|3)xm(%)

* Likelihood contains experimental information.

* Prior contains theoretical prejudices. We use non-informative priors, that equally
weight linear or logarithmic infervals.



Bayesian Statistics

* We find the posterior density with a Monte Carlo algorithm, nested sampling.

* Too time consuming to use e.g. a grid-scan.

Our Bayesian credible regions are the smallest regions that contain a given fraction of the
posterior. e.g. the credible region A on the (m0, m12) plane:

fA p(mO,m1/2‘d)dm() dm1/2:O.95

A1s such that fA dm,dm,,,1s minimized



Including direct LHC SUSY searches

* JSignature is jets and missing energy,
fromn cascade decay of heavy
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Likelihood from LHC SUSY search

* Calculated our likelihood with a o By FITS (20112}
Poisson, plus systematics on CMSSM. pe = 0 L kel
background predictions. e B |
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Including “Higgs discovery”

The CMSSM Higgs is SM-like.

CMSSM predicts a light Higgs. Tree-level
< MZ, but with loops from stop squarks
<~130 GeV.

Likelihood function for Higgs discovery
is Gaussian with mean 125 GeV and
experimental error 2 GeV.

But we add another 2 GeV theoretical
error in quadrature: estimated from
scheme and scale dependence of
Higgs mass calculafion.
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Including dark matter constraints

* Neutralino is a brilliant DM candidate (stability by LSP and R-parity).

* Number density of neutralino: Boltzmnann rafte equation with thermal bath of
particles, but include expansion of universe. As universe cools, neufralinos are frozen

out.

Relic density ~ mass/thermally averaged annihilation cross section.

Need annihilation mechanism to reduce relic density.

WMAP measurement included as Gaussian, but we add in quadrature a ~10%
theoretical error (missing orders, propagating errors in sparticle masses).

Also include Xenon-100 20% limit on WIMP mass and S| scattering cross section.



e

Summary of priors

CMSSM parameter | Prior Range Prior Distribution
100 - 4000 (GeV) L og

100 - 2000 (Ge L og
_Inear

/ﬁ‘]ear
Fixed in a scan

Log: 1-10 weighted equally to 100-1000, etc. Linear: O-10 weighted equally to 10-20
etc. NB probability ™ piles-up” af infinity,

y
.,

s

™




e

Summary of likelihoods

Gaussian: the Measurement Mean | Error: Exp., Th. | Likelihood

likelin ' c ' |

kelinood is MSTazer4-4/fh Explained later Poisson
[ ~ o—(#=x)%/c* my (GEV) 125 2 2 —* Gaussian

Q, h° 0.1120 0.0056, 10% Gaussian
Sin Huff 0.23116 0.00013, 0.00015 | Gaussian
myy (GeV) 80.399 0.023, 0.015 Gaussian

5(g—2)5 7Y x101 | 28.7 8.0, 1.0 Gaussian
BR (B — X¢y)x10% | 3.60 0.23, 0.21 Gaussian
BR (B, — 7v)x10* | 1.66 0.66, 0.38 Gaussian
AMp, (GeV) 17.77 0.12, 2.40 Gaussian

BR(Bs — p"p7) <45x107° |0, 14% Error Fn.
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Results (im0, m12)
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DM annihilation mechanism shapes
ploft:

A-funnel region. Neutralinos annihilate
via heavy-Higgs resonance 2my ~ My

Stau co-annihilation region. Neutralinos
co-annihilate with staus tfo reduce relic
density, My ~ Mz

Focus point at 2 sigma (sizable Higgsino
component, WW and ZZ enhanced).



Posterior pdf

CMSSM, p>0.-~

Log Priors

| LHC (5/fb)

my, ~125 GeV

Results (AQ, tan beta)

* DM annihilation again shapes plot:

solid: 10 region

dashed: 20 region |

* Best fit
® Posterior mean
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— A-funnel prefers large tan betaq, to
lower mA and open Higgs resonance.

At the expense of flavour physics,
which likes small tan beta.

Stau co-annihilation prefers smaller tan
beta.



ChiA2 contributions to CMSSM BayesFITS (2012)
est-fit point. My TR
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Tension between observables...

* Null LHC searches are pushing (m0, m12) to larger values.
* -2 likes light smuons, to give signficant enhancements to g-2 via loops.

* Relic density requires particular annihilation mechanisms, and there is a fension with Higgs ~
125 GeV, which needs large tan beta.

* Flavour physics likes small tan beta.

=> Things are geftting difficult.

But CMSSM is still viable (acceptable agreement with experiments ).

If we suppose that g-2 anomaly has other explanation, things are fine.




Preferred sparticle masses
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Prospects

CMSSM has retreated to higher sparticle masses.

Most credible-regions ought to be within reach of the LHC with 100/flo (currently SUSY
limits with 5/fb).

* Measurements of Higgs couplings could further constrain the CMSSM.

* Buft effect of precision mass measurements limited by Higgs mass calculafion in
CMSSM (also relic density).

* Credible regions are within reach of Xenon-1 Tonne.
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Conclusions

Compared CMSSM against experimental data, including 2 years of LHC.
Simulated CMS LHC SUSY search at the event level.

Have powerful statistical fools to explore rich parameter space.

CMSSM is retreating quickly up (m0, m12) plane.

But sfill just viable, especially if g-2 is omitted.

Typical masses: neutralino ~ 0.5 TeV, squarks & gluinos ~ 3 TeV.

Prospects: Most of favoured parameter space can be reached in ongoing
experiments.
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