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Nutshell



Jeffreys-Lindley’s paradox in a nutshell

Hypothesis testing is the most controversial aspect of
inference.

Frequentist methods (Neyman, Fisher, etc) and Bayesian
methods don’t always agree.

A specific example of a disagreement was given by Lindley1,
though previously noted by Jeffreys2.

Lindley described it as a paradox. It’s been somewhat
controversial since.

1D. V. Lindley, Biometrika 44, 187–192 (1957).
2H. Jeffreys, (Oxford University Press, 1939).
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http://biomet.oxfordjournals.org/content/44/1-2/187.short


“Paradox”

Lindley’s paradox is in fact a difficulty reconciling two
paradigms — Bayesian and frequentist statistics. There is no
mathematical inconsistency.

Similar in that regard to paradoxes in physics from reconciling
quantum/relativistic and classical physics — think of ladder,
twin, EPR parodxes etc.

Like in physics, paradoxes are useful for understanding
foundations of a subject. Again, think of EPR or Maxwell’s
demon.
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Bayes versus frequentism

Bayes — probability is a (unique) measure of degree of belief
(see e.g., Cox’s theorem in Chap. 2 of Jaynes3)

Frequentist — probability is the (asymptotic) frequency at
which an outcome occurs, in a hypothetical sequence of
repeated trials.

Homework: is probability a property of a coin? The
coin/thrower system? Measure of degree of belief about the
outcome of a coin toss? (see Chap. 10.3 of Jaynes).

Homework: is probability a property of a QM system?

3E. T. Jaynes, (Cambridge University Press, 2003).
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Bayes versus frequentism

Bayesian probabilities can describe any hypotheses or
propositions.

Figure 1: Probability that Leicester would win the Premier league?
5000/1 betting odds. Best inference sometimes completely wrong.

Frequentist probabilities describe only repeatable events.
Homework: if events are repeated identically, why is there
variation in outcome? 5/26



Hypothesis testing



Bayesian I

Calculate the plausibility of a theory directly

p(M|D) =
p(D|M) · p(M)

∑ p(D|M)p(M)
(1)

This requires more than one model to be specified. See e.g.,
Gregory4 or Bretthorst5 or any introductory textbook.

The factor p(D|M) is called the evidence,

p(D|M) =
∫

p(D|M, x)p(x|M)dx (2)

6/26



Bayesian II

You can calculate evidences with e.g., MultiNest6. In fact, we
usually considered a Bayes factor, which is ratio of evidences

B =
p(D|M1)

p(D|M2)
(3)

The Bayes factor “updates” the relative prior belief in two
models with data, resulting in a posterior belief,

Posterior odds = Bayes factor× Prior odds (4)

The factors p(M) and p(x|M) are called priors. They reflect
prior knowledge/ignorance. Priors are the most controversial
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Bayesian III

ingredient. They could be selected by e.g., invariance under a
symmetry or maximum entropy7.

What if we want to make a decision? Do we announce a
discovery? Do we declare a new drug safe? Decision theory:
loss/utility functions are required. Evidences alone tell us
“truth”, not best choices.

4P. Gregory, (Cambridge University Press, 2005).
5G. L. Bretthorst, in , edited by G. R. Heidbreder, (Springer Netherlands, Dordrecht, 1996), pp. 1–42.
6F. Feroz, et al., Mon. Not. Roy. Astron. Soc. 398, 1601–1614 (2009), arXiv:0809.3437 [astro-ph], F. Feroz, et al., (2013),
arXiv:1306.2144 [astro-ph.IM].
7D. A. Lavis, and P. J. Milligan, The British Journal for the Philosophy of Science 36, 193–210 (1985).

8/26

http://arxiv.org/abs/0809.3437
http://arxiv.org/abs/1306.2144
http://www.jstor.org/stable/687036


Frequentist goodness-of-fit test test I

Test with a single hypothesis (Fisher, Pearson et al).

Based around a decision — accept or reject model (cf. Fisher
advocated reporting p-values). Not based around
epistemology — e.g., calculate relative plausibility of two
models.

Consider the type-1 error — probability of rejecting the null
hypothesis, given that it was true.

Pick a “null” hypothesis that you wish to test.

Pick a “sufficient” test-statistic that measures disagreement
between data and predictions. The test-statistic is a random
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Frequentist goodness-of-fit test test II

variable and it would be convenient if it had a known
distribution. Common test-statistic e.g. χ2.

Calculate a p-value (also a random variable) — the probability
of obtaining a test-statistic so extreme, were the null
hypothesis true. Homework: show that p-value is uniformly
distributed.

p-value = p(λ ≥ λobserved|H0) (5)
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Frequentist goodness-of-fit test test III

Figure 2: Tail probability.
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Frequentist goodness-of-fit test test IV

Reject model if p-value less than a previously chosen
threshold, e.g., 0.05. p-values are often converted into
z-scores, i.e., expressed as the probability in tail of standard
normal at z,

z = Φ−1(1 − p-value) (6)

Homework: why did this catch on? Why report z-score rather
than p-value?

This is a property of the experiment (and hypothetical
pseudo-experiments): if we hypothetically repeated
experiment many times, we’d reject the null hypothesis in 5%
of cases, if it were true.
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Frequentist hypothesis test I

Test with two hypotheses (Neyman et al).

This allows one to consider type-1 and type-2 errors. Type-2
error — probability of accepting null hypothesis, given that
alternative was true.

Allows a notion of statistical power: for a fixed type-1 error,
minimise the type-2 error (see Neyman-Pearson lemma8
about likelihood ratios being best test-statistic).
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Frequentist hypothesis test II

Figure 3: Type-1 and type-2 errors.

Homework: how did the goodness-of-fit test work without
calculating type-2 error? What does it mean to reject a model
with no alternative?
8J. Neyman, and E. S. Pearson, Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 231, 289–337 (1933), eprint:
http://rsta.royalsocietypublishing.org/content/231/694-706/289.full.pdf.
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Lindleys’ paradox



They disagree. Even with lots of data.

The frequentist and Bayesian methods needn’t agree.

Folk theorem — they agree in the limit of lots of data. This is
not true in model selection. In parameter inference,
something like this is true (Bernstein–von Mises theorem).

Lindley provided a specific example.
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The problem

Suppose we pick n samples from a normal distribution,
N(µ, σ2), with known variance σ2. We want to select a model
that best predicts the mean of distribution.
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Frequentist p-value from goodness-of-fit

Null hypothesis, H0: the mean µ = µ0.

By the central limit theorem, the sample mean x̄ = ∑ xi/n, is
normally distributed, x̄ ∼ N(µ, σ2/n). Let’s pick a χ2

test-statistic:
χ2 =

(x̄ − µ0)2

σ2/n
(7)

We can calculate χ2, and find the p-value,

p-value = p(χ2 ≥ χ2
obs|H0) (8)

from the survival function of a χ2-distribution.

The p-value depends on the χ2 — for fixed χ2, the number of
samples n didn’t matter.
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Digression on Gaussian distribution



Why is Gaussian distribution ubiquitous?

CLT
Take n samples from a distribution of mean µ, variance σ2.
The sample mean x̄ ∑ x/n is distributed x̄ ∼ N(µ, σ2/n).

MaxEnt
If we only know the first two moments of a distribution, µ

and σ2, the distribution that maximises the Shannon
entropy (i.e., uncertainty) is the Gaussian! i.e., Gaussian is
most honest choice if that’s all you know.9.

9D. A. Lavis, and P. J. Milligan, The British Journal for the Philosophy of Science 36, 193–210 (1985).
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Bayes factor I

Two models, introduced on an equal footing:

• M1: µ = µ0.
• M2: µ lies inside an interval, length L, that includes µ0

and L ≫ σ. We pick a prior p(µ) = 1/L

Let’s calculate evidences. In M1, it is trivial,

p(D|M1) =
1√

2πσ/
√

n
e−

(x̄−µ0)
2

2σ2/n =

√
n√

2πσ
e−χ2/2 (9)
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Bayes factor II

In M2, we must marginalise the µ parameter by integration,

p(D|M2) =
∫

p(D|µ, M2)p(µ|M2)dµ (10)

=
1
L

∫ 1√
2πσ/n

e−
(x̄−µ)2

2σ2/n dµ (11)

≈ 1
L

(12)

Thus, we find a Bayes factor

B(M1/M2) =

√
nL√

2πσ
e−χ2/2 (13)

20/26



Bayes factor III

For fixed χ2, as n → ∞, the Bayes factor favours µ = µ0 by a
Bayes factor B → ∞. This result is somewhat insensitive to
choices of prior for µ in M2.

Bartlett10 observed the sensitivity of the Bayes factor to the
width of the uniform prior L. Homework: Do we need reliable
prior information about reliable interval of parameter to
make inference? What does this dependence mean?

1010.2307/2332888.
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The “paradox”

The behaviours of the p-value and Bayes factors as functions
of χ2 and n mean that

Paradox
Taking n → ∞, but fixing e.g., χ2 = 25, we would reject
µ = µ0 at 5σ. But the Bayes factor would favor µ = µ0 by a
factor B → ∞.
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Resolutions/discussion



Resolutions I

Lindley’s paradox was invoked by advocates of Bayesian and
frequentist statistics. The implications aren’t agreed upon.

Trivial resolution: two methodologies answer different
questions. That’s no good. What if they lead to different
decisions? e.g., should you announce a GW discovery?!

Should significance levels e.g., 5%, in fact be functions of
sample size n, resulting in agreement between approaches?

Re-examine what n → ∞ but tn fixed means? Under
alternative hypothesis, we expect tn → ∞ as n → ∞.
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Resolutions II

Is tn, in this case a χ2, well-defined under M2 in the Bayesian
analysis? There isn’t a particular prediction µ0 for the χ2

formula.

Are point null priors inappropriate?

Frequentist p-values overstate evidence against the null
hypothesis? i.e., one really cannot invert the p-value and
think of probability that the null hypothesis is true.
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Summary



Summary

Bayesian and frequentist methods for model selection don’t
always agree, even asymptotically in the limit of large
statistics.

One particular disagreement noted by Lindley and described
as a paradox.

Implications disputed. Both sides claimed victory.
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Questions?
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