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Portal models of dark matter



Dark matter experimental evidence

We all know the evidence for dark matter (DM) in gravitational
interactions, e.g.

(I) Rotation curves [2] (II) CMB [3]
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WIMP miracle

Once it is cold enough, DM particles cannot overcome Hubble
expansion and thus cannot annihilate.

This freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density.
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WIMP miracle

This is the WIMP miracle — as correct density achieved for
weak interactions.
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Simplest theories of DM

We construct the simplest WIMP models of DM by adding a
single particle to the SM: the WIMP itself.

The WIMP interacts with SM by a Z or Higgs portal:

DM

DM

Higgs or Z
boson

We consider all dimension ≤ 4, Lorentz invariant interactions
for WIMPs with spin-0, 1/2 and 1.
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SM portal models

There are many models

(scalar, Majorana fermion, Dirac fermion, vector) spin of WIMP
× (Higgs, Z) mediator

We added them all to the DM program microMEGAs [4, 5] via
the model building program calcHEP [6].
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Waning of the WIMP?



Waning of the WIMP?
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Waning of the WIMP?
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Waning of the WIMP?

In light of the failure to discover DM in direct detection
experiments, many doubting the plausibility of WIMP DM.

WIMP DM models can be fine-tuned to agree with data but
was their plausibility damaged?
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Current knowledge

Many “global fits” of models of dark matter, or models
containing a DM candidate (e.g., MSSM).

Few (no?) statistical analysis of damage to the plausibility
dark model models from the latest wave of dark matter
searches.

Let’s check the impact on Higgs and Z portal models.
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WIMP searches and constraints



DM annihilates to SM

DM must annihilate in the early Universe to set the relic
density measured by Planck.

DM

DM SM

SM

DM annihilation
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Relic abundance

From measurements of the CMB Planck [3] found

Relic abundance = Ωh2 = 0.1199± 0.0022

in ΛCDM.

The WIMP in our model must make up all of DM, not just a
fraction of it.

We use a Gaussian likelihood with a 10% theoretical
uncertainty.
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Resonance

If mχ ≃ mh/2 or MZ/2, annihilation is enhanced by an
on-shell propagator.

This allows a tiny coupling between DM and mediator.

We do not consider effect of kinetic decoupling [7, 8], though
may in the future.
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Indirect detection

DM annihilation could result in signals from high
mass-to-light galaxies such as dwarf spheroidal galaxies.

Fermi-LAT [9] searched for a γ-ray signal but saw nothing,
resulting in constraints on DM annihilation cross section.
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Constraint from Fermi-LAT

This results in an upper limit on ⟨σv⟩|v→0.
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The constraint depends on the “softness” of the final state, as
γ-rays are mainly from pion decay from χχ → bb etc.
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Other constraints (not included)

We do not consider observations of the galactic centre by
Fermi-LAT or HESS, or constraints from neutrino telescopes.

The constraints are weak and suffer from uncertainties.
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DM scatters with SM

We can search for DM in direct detection experiments. DM
elastic scatters with nucleons in a detector on Earth.

DM

DM SM

SM

Di
re
ct
de
te
ct
io
n

There is a wind of WIMP particles from the Earth’s motion in
the dark matter halo. 16/52



Direct detection

The Panda [10], LUX [11], XENON [12] and PICO [13] experiments
saw nothing, resulting in exclusion contours on the (mass,
cross section) planes:

Our likelihood function for this data was a step-function. We
included uncertainty in nuclear form factors and the local
density of dark matter. 17/52



Direct detection
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We also consider projected limits and limits down to the
neutrino floor.
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Uncertainties

The constraints depend upon a few uncertainties:

• What is the local density of DM?
• What is the velocity distribution of the DM interacting
with the detector (see [14])?

• What are the nuclear form factors that dress parton-level
amplitudes to nucleon ones?

Our treatment is possibly the most comprehensive yet.
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SM annihilates to DM

We can search for DM produced from collisions of SM particles.

DM

DM SM

SM

Collider production
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Collider searchers

The LHC [15] saw nothing — wanted to find missing energy as
DM escapes from the detector.

LEP [16] saw nothing — wanted to find Z decaying into DM
particles.
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Something + MET

We search for MET and a recoil against a photon or a jet.

Without recoil, the DM particles are almost back-to-back in
the laboratory frame and won’t leave MET.

We interpreted monojet and monophoton searches for DM at
the LHC via CheckMATE-2 [17–22].
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Something + MET

Analysis
√

s (TeV)
∫
L (fb−1)

ATLAS monojet [23] 8 20.3
ATLAS monojet [24] 8 20.3
ATLAS monojet [25] 13 3.2
CMS monojet [26] 8 19.7

ATLAS monophoton [27] 8 20.3
ATLAS monophoton [28] 13 3.2
ATLAS monophoton [29] 13 36.1
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Something + MET

The monojet searches (solid lines) were marginally stronger.
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Invisible widths

We made sure that constraints on the Higgs invisible
branching ratio from the LHC

BRinvh ≲ 24%

and Z width from LEP were satisfied.
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Data

Ωh2 0.1199± 0.0022± 10% Planck [3]

ΓinvZ 499.0± 1.5± 0.014MeV LEP [30]
BRinvh ≲ 0.24 LHC [31]

σ
p,n
SI ≲ 10−46cm2 PandaX [10]

σn
SD ≲ 10−40cm2 PandaX [32]

σ
p
SD ≲ 10−40cm2 PICO [11]
⟨σv⟩ ≲ 10−26cm3/s Fermi-LAT [9]

Mono-X searches
√

s = 8 TeV and 13 TeV LHC [15]
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Statistical methodology



Methodology

We have models and data. We need a statistical methodology
to judge the models in light of the data.

Our approach is two-pronged: Bayesian and frequentist.

Models + observed data + unobserved data (!?) + methodology
⇒ conclusions
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Bayesian

What is probability? A measure of plausibility.

Probability⇔ plausibility
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Scientific theories

What about applying it to scientific theories?

What is the probability of this theory in light of LHC
experiments?
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Scientific theories

What about applying it to scientific theories?

What about this one in light of LIGO’s discoveries?
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Prior knowledge

Probabilities depends upon priors.

The probability of a heads from the toss of a coin depends on
prior belief about the dynamics and initial conditions of the
coin.
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Prior knowledge

Probabilities depends upon priors.

The probability of a winning hand depends on prior belief
about the shuffled pack of cards and the integrity of the
dealer.
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Prior knowledge

Probabilities depends upon priors. The probability of a
scientific theory in light of data depends on prior beliefs
about the theory’s parameters, the theory itself and
alternative theories.
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Bayesian statistics

Bayesian statistics is a mathematical framework for
describing plausibility — a calculus of beliefs [33].

Developed by Bayes, Laplace and Jeffreys in 18th, 19th and
20th centuries.
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Bayes’ theorem

The most important equation is Bayes’ theorem — a unique
rule for updating plausibility in light of data:

p(M | D) =
p(D | M)

p(D)
· p(M).

Our posterior belief in a model, M, is found by updating our
prior belief with data, D.
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Model comparison

To update our belief in a model in light of data, we must
consider more than one model.

If we believe absolutely in a single model, we obtain

p(M | D) = p(M) = 1.

We simply find that we are certain about the model before
and after data.
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Bayes factors

Thus we must compare models. We compare two models with
a so-called Bayes factor

Bayes factor = Relative plausibility after data
Relative plausibility before data

in maths, by Bayes’ theorem,

Bayes factor = p(D | Ma)

p(D | Mb)︸ ︷︷ ︸
Calculate this ratio

=

Posterior odds — output︷ ︸︸ ︷
p(Ma | D)

p(Mb | D)

p(Ma)

p(Mb)︸ ︷︷ ︸
Prior odds — input
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Bayesian evidence

A Bayes factor is itself a ratio of evidences, where

Evidence = p(D | M) =
∫

p(D | M, x) · p(x | M) dx

The integrand is a product of likelihood and prior. Likelihood
could be e.g. a Gaussian for Higgs mass measurement or
Planck measurement of the dark matter relic density.

The integration is over the model’s parameters x. The
integration may be computationally challenging.
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Frequentist

Probability is the frequency with which outcomes occur in
hypothetical repeated trials,

p = lim
N→∞

n
N

Not a reflection of our knowledge/uncertainty but a property
of an experimental process.
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p-values

We are concerned about the probability of obtaining at least
as discrepant data, were the model true. We construct a
test-statistic

λ = −2 ln
maxL(mχ, g, · · · )

L0
.

This is a random variable. The term L0 insures that the
minimum test-statistic is zero for a model that perfectly
matches observations.

We calculate the p-value,

p-value = P(λ ≥ λobserved |model)
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p-value and evidence

The p-value is the frequency with which we expect to find a
test statistic at least as extreme as that observed, under the
null.

The p-value is not equal to the Bayesian evidence, p(D | M)

p-value ̸= p(D | M)

There is no general mapping between p and P(M | D) or
p(D | M).

It is not a matter of multiplying a p-value by a prior.
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Interpretation

We could set a threshold on p, e.g, α = 5%, and “reject” the
model if the observed p is less than α (Neyman-Pearson). This
would result in an error rate of α in repeated trials, were the
model true.

We didn’t do that, so I guess our interpretation of p is that
small p is evidence against the model (Fisher).
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Approximation

The p-value is difficult to calculate because we don’t know the
distribution of the test statistic.

We make an assumption that it is like a chi-squared with two
degrees of freedom

λ ∼ χ22

We could, in principle, perform MC simulations to check this,
but it’s computationally demanding.

From now on I just call λ = χ2.
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Priors and nuisance parameters



Priors for DM mass and couplings

We picked logarithmic priors for DM mass and coupling, since
we are ignorant of their scale.

DM mass, mχ 1 GeV – 10 TeV Log
DM coupling with SM, g 10−6 – 4π Log
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Sensitivity

There is a sensitivity analysis with linear priors in the paper.
The frequentist results don’t depend upon these choices.
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Priors nuisance parameters

In the frequentist analysis, priors on nuisance parameters
were applied as likelihoods.

DM scattering rate with matter depends upon nuclear form
factors.

Nuclear

σs 41.1± 8.1+7.8−5.8MeV Lattice, ETM [34] Gaussian
σπN

{
37.2± 2.6+4.7

−2.9MeV Lattice, ETM [34]
}

Flat + tails
58± 5MeV Pheno [35]

mu/md 0.38 – 0.58 Lattice [30] Flat
ms/md 17 – 22 Lattice [30] Flat

We also investigated an alternative treatment of σπN . 43/52



Priors nuisance parameters

DM flux on Earth depends on density and velocity distribution
of DM.

Astrophysical

ρDM 0.3GeV/cm3 Log-normal
vesc 550± 35 km/s Gaussian
vrel 235± 20 km/s Gaussian
v0 235± 20 km/s Gaussian
J-factor for dSphs Log-normal [9]
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Priors nuisance parameters

DM annihilation sensitive to masses of Higgs and Z-boson.

SM

MZ 91.1876± 0.0021 GeV Gaussian LHC [30]
mh 125.09± 0.24GeV Gaussian LEP [30]
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Statistical analysis of portal models



Putting the ingredients together

We now have

• Models, Mi: Scalar, fermion or vector DM that interacts
with SM by Z or Higgs boson

• Data, D: Planck measurement of the relic density and
failed searches for DM in direct detection, indirect
detection and colliders

• Statistical framework: with Bayesian statistics we can
calculate p(Mi | D)/p(Mj | D); with frequentist statistics
we can calculate p-value

We calculated the evidence integrals and explore parameter
space with MultiNest [36–38].
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Current data

First let’s consider the impact of all current data.

For the Bayes factor, we consider the change in plausibility
relative to Majorana Z-portal, which had the highest evidence.
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Current data

Model Bayes factor min χ2 p-value

Real scalar h-portal 0.55 2.6 0.27
Complex scalar h-portal 0.28 2.6 0.27
Real vector h-portal 0.23 2.6 0.27
Complex vector h-portal 0.059 2.6 0.27
Majorana h-portal 0.59 2.6 0.27
Dirac h-portal 0.71 2.6 0.27

Scalar Z-portal 3× 10−14 55 1.4× 10−12
Vector Z-portal 6.8× 10−10 35 2.2× 10−8
Majorana Z-portal 1 2.6 0.27
Dirac Z-portal 0.24 2.6 0.27
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Two models excluded

A lot of information. Most models just fine.

The vector Z and scalar Z portal models predicted substantial
scattering cross sections. They were excluded by direct
detection experiments.

The results of the Bayesian and frequentist analysis are
consistent.
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Damage to simple DM models

Perhaps the failed searches for DM in direct detection
experiments damaged plausibility of all portal models?

The Bayes factors shown the change in relative plausibility
amongst the portal models.

Let’s compare against an hypothetical model that predicts no
signature in DD experiments with current and future DD limits.
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Damage to simple DM models

Damage to plausibility from DD

Model Present Future Neutrino floor

Real scalar h-portal 0.3 0.006 5× 10−5
Complex scalar h-portal 0.1 0.002 1× 10−5
Real vector h-portal 0.1 0.0009 9× 10−7
Complex vector h-portal 0.02 0.001 6× 10−10
Majorana h-portal 0.2 0.2 0.1
Dirac h-portal 0.2 0.1 0.1

Scalar Z-portal 1× 10−14 7× 10−73 7× 10−129
Vector Z-portal 3× 10−10 7× 10−54 2× 10−101
Majorana Z-portal 0.3 0.2 0.1
Dirac Z-portal 0.08 0.04 0.01 48/52



Damage to simple DM models

Direct detection experiments did not greatly damage the
plausibility of many of the simplest models!

Hypothetical future results from LZ, XENONnT, and PICO might
begin to damage a few models.

But fermionic models survive even once limits on the
spin-independent cross section reach the neutrino floor!
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Damage to simple DM models

The story from the change in χ2 is similar, though
disagreement about change in status of e.g., scalar DM
interacting through Higgs portal.
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Damage to simple DM models

∆χ2

Model Present Future Neutrino floor

Real scalar h-portal 0 0 0.87
Complex scalar h-portal 0 0 2.4
Real vector h-portal 0 0 8.5
Complex vector h-portal 0 0 14
Majorana h-portal 0 0 0
Dirac h-portal 0 0 0

Scalar Z-portal 52 3.2× 102 5.7× 102
Vector Z-portal 33 2.3× 102 4.5× 102
Majorana Z-portal 0 0 0
Dirac Z-portal 0 0 0 48/52



What’s going on?

Let’s see what is happening in the scalar DM interacting
through Higgs portal — this is a popular model, and Bayesian
and frequentist analysis somewhat disagreed.
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Posteriors for the mass and couplings

With current data, the mass of scalar DM with a Higgs portal is
pushed to multi-TeV region in red or the narrow resonance
region by DD constraints.
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Direct detection prospects

We require sensitivity for multi-TeV dark matter and/or low
cross sections — future experiment XENONnT [39] should
probe it.
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Direct detection prospects

DM is pushed into the Higgs funnel by XENONnT. By this point
this model becomes fine-tuned although there remain points
with small chi-squared.
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Direct detection prospects

The chi-squared may be small but only in a tiny region, hence
the contrasting Bayesian and frequentist results.
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Conclusions

• We constructed many simple models of WIMP DM that
interact with the SM through the Higgs or Z boson

• We carefully considered all relevant experimental data
and uncertainties

• We analyzed the models with Bayesian and frequentist
statistics

• Found limited support for claims that WIMP DM is under
pressure — a few models ruled out/implausible, but there
is a long way to go in DD searches

• Waning of the WIMP is premature
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