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Model selection



Model selection

Throughout science, we have the following problem:

I have data and some models. What is the status of my models in
light of the data?

2/45



Error theoretic

Construct a rule so that you’d wrongly reject the null hypothesis at a
pre-specified rate in the long-run in an ensemble of experiments.

E.g., we reject at null hypothesis 95% confidence level.

We can’t treat all models on equal footing — must specify a null —

and doesn’t consider only about the evidence from this experiment

— we have to think about an ensemble of repeats.
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Bayesian updates

Compute the change in plausibility of a model in light of data

relative to another model or set of models.

We just apply probability theory to the problem. All models

treated equally.

Simple in theory; in practice there are di�iculties.
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p-value

Compute a p-value

P (data more or as extreme as that observed | null hypothesis)

Very popular in particle physics and elsewhere.

• Use it as a proxy for the plausibility of H0. Small p-value⇒
H0 implausible.

• Use it control error rate: if we reject null when p-value ≤ 0.05,

for example, becomes error theoretic approach with error rate

0.05.
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Bayesian evidence



Bayes factors

Let’s pursue the Bayesian approach (Je�reys 1939).

The Bayes factor (Kass and Ra�ery 1995) relates the relative
plausibility of two models a�er data to their relative plausibility
before data;

Posterior odds = Bayes factor × Prior odds

where

Bayes factor =
p (Observed data |Model a)
p (Observed data |Model b)

A nice result — by applying laws of probability, we see that models

should be compared by nothing other than their ability to predict

the observed data.
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Bayesian evidence

The factors in the ratio are Bayesian evidences

Z ≡ p (D |M) =
∫

ΩΘ
L(Θ)π(Θ) dΘ,

where D is the observed data, L(Θ) = p (D |Θ,M) is the

likelihood and π(Θ) = P (Θ |M) is our prior, and Θ are the

model’s parameters.
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Priors

Many consider the dependence of the Bayes factor on the priors to

be a major problem.

No priors, no predictions

I need to compare your model’s predicts with data. If you don’t tell

the plausible parameters, how am I to know what it predicts?

Sensitive to arbitrary choices

If the inference changes dramatically within a class of reasonable

priors, we can’t draw reliable conclusions.

Science is hard; it’s hard to get reliable knowledge about the world.

We o�en disagree about the consequences of experimental data.

How could it be any other way?
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Bayesian evidence

The evidence is o�en the single most important number in the
problem and I think every e�ort should be devoted to calculating it

Mackay (2003)

The single most important number in inference? Let’s think about

how to compute it!
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It’s a di�icult integral

Multi-dimensional: Our models of physics might have many

parameters. Even simple models contain O(10) parameters

Multi-modal: We don’t live in Gaussian land. In physics, the

likelihoods can feature degeneracies and multiple modes

Fat-tailed: Large variance if you try Monte Carlo integration
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Nested sampling



Algorithm

Skilling’s idea (Skilling 2004; Skilling 2006). We can write

Z =
∫
L(X) dX

where the volume variable

X(L?) = Fraction of prior volume with L(Θ) ≥ L?

=
∫
L(Θ)≥L?

π(Θ) dΘ

and L(X(λ)) = λ. This is a one-dimensional integral. We can

approximate it by a Riemann sum

Z ≈∑L(X)∆X
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Compression

We haven’t achieved much yet. The trick is how to estimate X?
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Compression

0. Draw n
live

samples from the prior — the live points

1. Denote the smallest likelihood amongst the live points by L?

2. Replace that live point by one drawn from the constrained

prior

π?(Θ) ∝

π(Θ) L(Θ) ≥ L?

0 otherwise

3. Make a statistical estimate of X(L?) from this procedure

4. Increment estimate of evidence, Z → Z + L?∆X
5. If we have completed evidence sum to given tolerance, stop.

Otherwise go to 1.

So we evolve a set of n
live

live points to higher and higher

likelihoods, replacing one live point at a time.
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Compression

We know that X0 = 1. How much do we expect X to contract when
we replace the worst point?

Drawing from the constrained prior means live points are

distributed uniformly in X from 0 to X(L?).

In other words, the

fi =
X(Li)
X(L?)

are uniformly distributed from 0 to 1.
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Compression

We know that X0 = 1. How much do we expect X to contract when
we replace the worst point?

The largest one, t ≡ max fi , gives us the compression. We can write

p(t) =
(
n
live

1

)
· tnlive−1 · 1 = n

live
tnlive−1

where the factors are combinatorial, the probability of n
live
− 1

samples less than t , and lastly the probability density of a point

at t .
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Compression

We know that X0 = 1. How much do we expect X to contract when
we replace the worst point?

We find the expected compression:

〈log t〉 = n
live

∫
1

0

tnlive−1 log tdt = − 1

n
live

Thus we may estimate that at iteration i

Xi ≡ X(L?
i ) ≈ e−i/nlive
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Compression

Consider the number of steps to reach the bulk of the posterior

mass (typical set)

e−i/nlive ≈ e−H

where H is the relative entropy from prior to the posterior.

This ultimately allows us to estimate the error in our estimate of
logZ

∆ logZ ≈

√
H
nlive

So multi-dimensionality not fundamental problem; the problem is
significant compression.

And precision goes like 1/
√
computational e�ort as usual.
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2d Gaussian example

We take a two-dimensional Gaussian centered at (0.5, 0.5). The

analytic logZ = 0.
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Exploration

How can we find an independent sample from the constrained prior?

This step in nested sampling was needed for our estimates of the

volume, X .

Failure to correctly sample from the constrained prior leads to

faulty estimates of the evidence.

This requires an exploration strategy.
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Exploration

MultiNest (Feroz and Hobson 2008; Feroz, Hobson, and Bridges

2009; Feroz et al. 2013) — bound live points by ellipsoids. Use them

to approximate iso-likelihood contour. Sample from the ellipsoids.

x

0.490
0.495

0.500
0.505

0.510

y

0.490

0.495
0.500

0.505
0.510

z

0.490

0.495

0.500

0.505

0.510

Two-dimensional Gaussian.
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Exploration

MultiNest (Feroz and Hobson 2008; Feroz, Hobson, and Bridges

2009; Feroz et al. 2013) — bound live points by ellipsoids. Use them

to approximate iso-likelihood contour. Sample from the ellipsoids.

x

0.490
0.495

0.500
0.505

0.510

y

0.490

0.495
0.500
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z

0.490

0.495

0.500

0.505

0.510

Expand to be safe — at expense of sampling e�iciency.
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Exploration

PolyChord (Handley, Hobson, and Lasenby 2015a; Handley,

Hobson, and Lasenby 2015b) — slice sampling walk, starting from a

randomly chosen live point.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

Start

Two-dimensional Gaussian. 20 steps.
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Exploration

PolyChord (Handley, Hobson, and Lasenby 2015a; Handley,

Hobson, and Lasenby 2015b) — slice sampling walk, starting from a

randomly chosen live point.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

Start

200 steps. More steps to reduce correlation — at expense of

sampling e�iciency.
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Things can go wrong. . .

• What if I don’t expand the ellipsoids enough?

• What if I don’t use enough steps?

• What if my exploration strategy isn’t actually drawing

independent samples from the constrained prior?

It would violate assumption and lead to faulty estimate of

evidence.

But how would I know?

20/45



A new cross-check



What if we new the X of every sample?

Suppose we knew the X of every sample, X(Li). We could look at

fi =
X(Li)
X(L?)

it should be uniformly distributed from 0 to 1 as each new X(Li)
should be uniformly distributed from 0 to X(L?).

You could test whether the f indeed followed a uniform
distribution (Buchner 2016).

21/45



Histogram of the fractions f

Let’s run the same nested sampling run, but this time monitor the

fractions.
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What do we know?

We don’t know that. We do know the likelihood of every new

sample, Li , and that X(L) is a monotonic function.

So we can rank the n
live

points by X(Li) by ranking them by Li .

The rank of every new sample, r, should be uniformly distributed
from 1 to nlive.

It’s just as likely to be the worst, second worst, . . . , second best,

best likelihood.

We can test whether the r indeed follow a discrete uniform
distribution.

23/45



KS test

To compare the samples with the uniform distribution, we

compute a p-value form a Kolmogorov-Smirno� test.

Sorry to sully a Bayesian algorithm with a p-value.

We use all the iterations and we test chunks of n
live

iterations.

The la�er stops biased periods in long runs being diluted by lots of

unbiased iterations.
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Histogram of ranks r

Let’s run the same two-dimensional Gaussian nested sampling run

but this time monitor the fractions and the insertion ranks, r .
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Detecting faults

This time, let’s make the sampling biased by sampling from the

wrong iso-likelihood contour — we find the correct one then

contract it by a (random) factor 0.8± 0.1.
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Detecting faults

We see a tiny p-value and a biased overestimate of Z —

overestimated because the likelihoods that we draw are greater

than they should be.
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Correlations

The ranks r are not, however, independent — the distribution of

the live points only changes by one point every iteration.

If live points a are clustered together in X , insertion indexes in that

region are unlikely.

We ignore this complication. However, if anything, correlations

make the insertion ranks repel each other,
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Toy problems



Toy problems

In our paper, we introduce 4 toy problems. Here we discuss a

couple of them.

For each one, we will compute the evidence using MultiNest and

PolyChord, and p-values from our test.

We do 100 repeats. And good efr� 1 and bad efr� 1 exploration

se�ings.
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Gaussian

Multi-dimensional Gaussian likelihood

L(Θ) ∝ e−
∑(Θ−µ)2

2σ2

We pick a uniform prior from 0 to 1 for each dimension.

The analytic evidence is always logZ = 0 since the likelihood is a

pdf in Θ, modulo small errors as the infinite domain is truncated

by the prior.

We pick µ = 0.5 and a diagonal covariance matrix with σ = 0.001

for each dimension.
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MultiNest. Gaussian, logZ = 0

Tiny p-values and biased results shown in red.

Smaller efr⇔ stricter run

efr d logZ Inaccuracy Bias p-value Rolling

0.10 2 −0.00± 0.10 −0.04 −0.47 0.50 0.49

0.10 10 0.01± 0.23 0.04 0.48 0.59 0.60

0.10 30 0.38± 0.41 0.93 10.56 0.52 2.7 · 10−4
0.10 50 2.08± 0.52 3.98 41.25 0.38 4.5 · 10−24
1 2 −0.00± 0.10 −0.04 −0.46 0.52 0.49

1 10 0.57± 0.23 2.43 26.07 0.21 1.2 · 10−4
1 30 2.35± 0.40 5.83 63.82 0.23 2.2 · 10−23
1 50 4.06± 0.52 7.81 92.99 0.30 1.3 · 10−34
10 2 −64.75± 0.11 −532.44 −6.95 7.7 · 10−3 0.06

10 10 2.81± 0.23 12.30 150.55 2.1 · 10−6 1.7 · 10−19
10 30 4.30± 0.40 10.75 174.47 0.02 3.1 · 10−68
10 50 6.04± 0.52 11.66 197.79 0.08 1.1 · 10−93
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PolyChord. Gaussian, logZ = 0

Tiny p-values and biased results shown in red.

Smaller efr⇔ stricter run

efr d logZ Inaccuracy Bias p-value Rolling

0.50 2 0.01± 0.11 0.11 1.03 0.54 0.60

0.50 10 −0.00± 0.23 −0.01 −0.10 0.48 0.52

0.50 30 −0.06± 0.41 −0.15 −1.61 0.54 0.57

0.50 50 −0.05± 0.52 −0.10 −0.85 0.58 0.51

1 2 −0.02± 0.11 −0.19 −1.96 0.42 0.48

1 10 −0.04± 0.23 −0.17 −2.20 0.55 0.59

1 30 −0.83± 0.41 −2.06 −20.73 0.61 0.46

1 50 −2.48± 0.52 −4.73 −54.22 0.49 0.59

2 2 −0.01± 0.11 −0.12 −0.89 0.47 0.53

10 10 2.20± 0.23 9.50 30.29 0.13 0.22

30 30 48.37± 0.64 112.25 70.58 8.2 · 10−10 0.02

50 50 69.74± 3.05 23.31 106.51 8.0 · 10−86 1.4 · 10−6
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Gaussian shells

This multidimensional likelihood is

L(Θ) = shell(Θ; c, r,w) + shell(Θ;−c, r,w)

where the shell function is a Gaussian

shell(Θ; c, r,w) =
1√
2πw

e−(|Θ−c|−r)
2/(2w2).

The highest likelihood region forms a shell of characteristic width

w at the surface of a d-sphere of radius r .

With uniform priors between −6 and 6, the analytic evidence is

approximately,

Z = 2〈|x |d−1〉Sd/12d

where Sd is the surface area of an d-sphere and 〈|x |d−1〉 is the
(d − 1)-th non-central moment of a Gaussian, N (r,w2).
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MultiNest. Gaussian shells,
logZ = −1.75,−14.59,−60.13,−112.42

Tiny p-values and biased results shown in red.

Smaller efr⇔ stricter run

efr d logZ Inaccuracy Bias p-value Rolling

0.10 2 −1.75± 0.05 −0.06 −0.64 0.55 0.55

0.10 10 −14.59± 0.12 0.02 0.16 0.57 0.56

0.10 30 −59.61± 0.24 2.11 24.29 0.37 7.3 · 10−6
0.10 50 −110.15± 0.33 6.87 115.58 0.07 3.7 · 10−23
1 2 −1.71± 0.05 0.79 8.52 4.7 · 10−3 0.10

1 10 −13.92± 0.12 5.57 65.88 0.02 1.1 · 10−5
1 30 −57.57± 0.24 10.67 151.79 7.7 · 10−3 1.4 · 10−20
1 50 −107.97± 0.33 13.63 218.07 3.5 · 10−3 3.6 · 10−37
10 2 −1.73± 0.05 0.39 1.45 0.07 0.18

10 10 −11.73± 0.11 25.56 321.53 6.8 · 10−18 1.7 · 10−19
10 30 −55.41± 0.24 20.03 367.16 3.0 · 10−6 9.3 · 10−66
10 50 −105.82± 0.32 20.42 480.50 9.3 · 10−6 2.2 · 10−92
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PolyChord. Gaussian shells,
logZ = −1.75,−14.59,−60.13,−112.42

Tiny p-values and biased results shown in red.

Smaller efr⇔ stricter run

efr d logZ Inaccuracy Bias p-value Rolling

0.50 2 −1.74± 0.05 0.16 1.54 0.13 0.13

0.50 10 −14.59± 0.12 0.02 0.12 0.50 0.48

0.50 30 −60.12± 0.25 0.03 0.29 0.56 0.55

0.50 50 −112.33± 0.34 0.27 2.65 0.40 0.58

1 2 −1.75± 0.05 −0.02 −0.30 0.01 0.01

1 10 −14.59± 0.12 0.02 0.19 0.49 0.61

1 30 −60.46± 0.25 −1.36 −14.57 0.48 0.53

1 50 −113.52± 0.34 −3.26 −34.47 0.50 0.51

2 2 −1.74± 0.05 0.06 0.43 6.1 · 10−6 2.1 · 10−5
10 10 −14.05± 0.12 4.42 15.01 0.09 0.09

30 30 −38.78± 0.21 103.26 159.47 3.5 · 10−5 5.2 · 10−3
50 50 −64.20± 0.63 103.63 93.31 5.2 · 10−12 3.8 · 10−7
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Summary of toy problem

A lot of numbers. . .

• Less strict exploration se�ings or high number of dimensions

• . . . leads to a biased estimate of evidece

• . . . o�en detected by tiny p-value by our test
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Example from cosmology



Cosmology

Handley considered Bayesian evidence for a spatially closed

Universe (Handley 2019a). Evidences from combinations of four

datasets were computed using PolyChord for a spatially flat

Universe and a curved Universe.

The Bayes factors showed that a closed Universe was favoured by

odds of about 50/1 for a particular set of data.

There were 22 NS computations in total (Handley 2019b).
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Cosmology

We ran our cross-check on each of the 22 NS runs finding p-values
in the range 4% to 98%.

THis does not suggest problems with the NS runs. The p-value of
4% is not particularly alarming, especially considering we

conducted 22 tests.

Flat Curved

Data p-value Rolling p-value p-value Rolling p-value
BAO 0.89 0.82 0.07 0.05

lensing+BAO 0.72 0.54 0.19 0.43

lensing 0.26 0.14 0.04 0.64

lensing+SH0ES 0.08 0.08 0.78 0.04

Planck+BAO 0.39 0.56 0.14 0.43

Planck+lensing+BAO 0.68 0.69 0.70 0.27

Planck+lensing 0.94 0.49 0.89 0.72

Planck+lensing+SH0ES 0.92 0.92 0.33 0.82

Planck 0.81 0.69 0.84 0.88

Planck+SH0ES 0.20 0.48 0.92 0.97

SH0ES 0.59 0.59 0.98 0.98 38/45



Summary of examples

• Applied check to NS runs on several toy functions with

known analytic results in 2 – 50 dimensions

• Detect problematic runs for MultiNest and PolyChord for

many problems, se�ings and dimensions

• Easy to apply to realistic examples

• Problem detected by our cross-check usually corresponds to

biased estimate of the evidence, though in a few cases the

evidence estimate remains reasonable
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Speculation



Birth index

During a run, we can make a sequence (of length niter) of birth
indexes — the iterations at which the point that died was born.

The insertion ranks we have been discussing are actually a lossless
compression of the sequence of birth indexes.

• nniter
live

possible sequences of insertion ranks

• There are not niter! possible sequences of birth indexes —

points cannot die before they were born! At each iteration,

there are only n
live

possible birth indexes that could become

the dead point⇒ nniter
live

possible sequences.
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A new summation?

The classic nested sampling estimator of the evidence uses

• The L of every dead point

• The iteration at which each dead point died

What if we used as well

• The iteration at which each dead point was born

41/45



A new summation?

The classic nested sampling estimator of the evidence uses

• The L of every dead point

• The iteration at which each dead point died

What if we used as well

• The iteration at which each dead point was born

41/45



A new summation?

The hypothetical improved estimator could

• Reduce variance

• Be more robust with respect to biases in sampling from the

constrained prior
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A new summation?

At the moment, we estimate Z from the statistical estimates of the

volume, {X} ≡ X0,X1,X2, . . .

Z =
∫
Z({X})p ({X})∏ dX where Z({X}) = ∑L?

i (Xi−Xi+1)

and we have 0 < Xj < Xj−1,

p (Xj | Xj−1) =
n
live

Xj−1

(
Xj
Xj−1

)n
live
−1

What if we condition on the insertion ranks?

Z =
∫
Z({X})p ({X} | insertion ranks)∏ dX

That is, what if we use p ({X} | insertion ranks) rather than just
p ({X})? Can we do it? It could be a kind of Rao-Blackwellization.
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Not yet

Simulating from p ({X}) was easy.

Simulating from p ({X} | insertion ranks) isn’t so straight-forward.

On the other hand, it doesn’t require any likelihood evaluations.

So even if it is slightly involved, it probably won’t a�ect the overall

computation time for realistic problems.

If you want to solve this problem, let’s talk!
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Summary

• Nested sampling is a popular algorithm for computing

Bayesian evidence

• We developed the first test of single nested sampling runs

• Appears to work nicely on toy and realistic problems

• Could become an important part of nested sampling analysis

• Could become a best practice to apply the check whenever

using nested sampling

• Hints towards a be�er estimate of the evidence
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