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Model selection



Model selection

Throughout science, we have the following problem:

I have data and some models. What is the status of my models in
light of the data?
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Error theoretic

Construct a rule so that you’d wrongly reject the null hypothesis at a

pre-specified rate in the long-run in an ensemble of experiments.
E.g., we reject at null hypothesis 95% confidence level.

We can’t treat all models on equal footing — must specify a null —
and doesn’t consider only about the evidence from this experiment
— we have to think about an ensemble of repeats.
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Bayesian updates

Compute the change in plausibility of a model in light of data
relative to another model or set of models.

We just apply probability theory to the problem. All models
treated equally.

Simple in theory; in practice there are difficulties.
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p-value

Compute a p-value

P (data more or as extreme as that observed | null hypothesis)

Very popular in particle physics and elsewhere.

+ Use it as a proxy for the plausibility of Hy. Small p-value =
Ho implausible.

« Use it control error rate: if we reject null when p-value < 0.05,
for example, becomes error theoretic approach with error rate

0.05.
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Bayesian evidence



Bayes factors

Let’s pursue the Bayesian approach (Jeffreys 1939).

The Bayes factor (Kass and Raftery 1995) relates the relative
plausibility of two models after data to their relative plausibility
before data;

Posterior odds = Bayes factor x Prior odds

where
p (Observed data | Model a)

p (Observed data | Model b)

Bayes factor =

A nice result — by applying laws of probability, we see that models
should be compared by nothing other than their ability to predict

the observed data.
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Bayesian evidence

The factors in the ratio are Bayesian evidences

Z=p(DIM)= [ £(O)n(0)de,

where D is the observed data, £(©) = p(D|©, M) is the
likelihood and 71(©) = P (© | M) is our prior, and © are the
model’s parameters.

7/45



Many consider the dependence of the Bayes factor on the priors to
be a major problem.

No priors, no predictions

| need to compare your model’s predicts with data. If you don’t tell
the plausible parameters, how am | to know what it predicts?

Sensitive to arbitrary choices

If the inference changes dramatically within a class of reasonable
priors, we can’t draw reliable conclusions.

Science is hard; it’s hard to get reliable knowledge about the world.
We often disagree about the consequences of experimental data.

How could it be any other way?
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Bayesian evidence

The evidence is often the single most important number in the
problem and | think every effort should be devoted to calculating it

Mackay (2003)

The single most important number in inference? Let’s think about

how to compute it!
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It’s a difficult integral

Multi-dimensional: Our models of physics might have many
parameters. Even simple models contain O(10) parameters

Multi-modal: We don’t live in Gaussian land. In physics, the
likelihoods can feature degeneracies and multiple modes

Fat-tailed: Large variance if you try Monte Carlo integration
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Nested sampling



Algorithm

Skilling’s idea (Skilling 2004; Skilling 2006). We can write

Zz/ﬁMMX

where the volume variable

X(L*) = Fraction of prior volume with £(©) > L*

_/ 0)do
3>[:*

and L(X(A)) = A. This is a one-dimensional integral. We can
approximate it by a Riemann sum

ZrY LX)AX

11/45



Compression

We haven’t achieved much yet. The trick is how to estimate X?
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Compression

0. Draw ny. samples from the prior — the live points

So we evolve a set of nj;. live points to higher and higher
likelihoods, replacing one live point at a time.
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Compression

0. Draw ny. samples from the prior — the live points

1. Denote the smallest likelihood amongst the live points by £*

So we evolve a set of nj;. live points to higher and higher
likelihoods, replacing one live point at a time.
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Compression

0. Draw ny. samples from the prior — the live points

1. Denote the smallest likelihood amongst the live points by £*

2. Replace that live point by one drawn from the constrained
prior

(@) L(©)>L*

T (09) o
0 otherwise

So we evolve a set of nj;. live points to higher and higher
likelihoods, replacing one live point at a time.
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Compression

0. Draw ny. samples from the prior — the live points
1. Denote the smallest likelihood amongst the live points by £*
2. Replace that live point by one drawn from the constrained
prior
(0) (@) L(©)>L*
0 otherwise

3. Make a statistical estimate of X(L*) from this procedure

So we evolve a set of nj;. live points to higher and higher
likelihoods, replacing one live point at a time.
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Compression

0. Draw ny. samples from the prior — the live points
1. Denote the smallest likelihood amongst the live points by £*
2. Replace that live point by one drawn from the constrained
prior
(@) L(O)>Lr
N EOROE
0 otherwise
3. Make a statistical estimate of X(L*) from this procedure
4. Increment estimate of evidence, Z — Z + L*AX

So we evolve a set of nj;. live points to higher and higher
likelihoods, replacing one live point at a time.

13/45



Compression

0. Draw ny. samples from the prior — the live points

1. Denote the smallest likelihood amongst the live points by £*

2. Replace that live point by one drawn from the constrained
prior

(0) (@) L(©)>L*

0 otherwise

3. Make a statistical estimate of X(L*) from this procedure

4. Increment estimate of evidence, Z — Z + L*AX

5. If we have completed evidence sum to given tolerance, stop.
Otherwise go to 1.

So we evolve a set of nj;. live points to higher and higher
likelihoods, replacing one live point at a time.
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Compression

We know that Xy = 1. How much do we expect X to contract when
we replace the worst point?

Drawing from the constrained prior means live points are
distributed uniformly in X from 0 to X(£*).

In other words, the
_ X(£)
X(L*)

are uniformly distributed from 0 to 1.

14/45



Compression

We know that Xy = 1. How much do we expect X to contract when

we replace the worst point?

The largest one, t = max f;, gives us the compression. We can write

Ny R R
P = (7)) 1 = et

where the factors are combinatorial, the probability of nj,. — 1
samples less than t, and lastly the probability density of a point
at t.
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Compression

We know that Xy = 1. How much do we expect X to contract when
we replace the worst point?

We find the expected compression:

[ 1
(log t) = n“\,e/ thive 1 og tdt = —
0 Mjive

Thus we may estimate that at iteration i

X = X(L7) ~ e/
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Compression

Consider the number of steps to reach the bulk of the posterior

mass (typical set)
e_i/nlive ~ e_H

where H is the relative entropy from prior to the posterior.

This ultimately allows us to estimate the error in our estimate of

log Z
H
Alog Z ~
Nijve

So multi-dimensionality not fundamental problem; the problem is

significant compression.

And precision goes like 1//computational effort as usual.
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2d Gaussian example

We take a two-dimensional Gaussian centered at (0.5,0.5). The

analytic log Z = 0.

logz = ~12.641
InX; = ~0.020. Exact = —0.066
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Exploration

How can we find an independent sample from the constrained prior?

This step in nested sampling was needed for our estimates of the

volume, X.

Failure to correctly sample from the constrained prior leads to

faulty estimates of the evidence.

This requires an exploration strategy.
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Exploration

MultiNest (Feroz and Hobson 2008; Feroz, Hobson, and Bridges
2009; Feroz et al. 2013) — bound live points by ellipsoids. Use them
to approximate iso-likelihood contour. Sample from the ellipsoids.

X 0.505
0.516-490

Two-dimensional Gaussian.
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Exploration

MultiNest (Feroz and Hobson 2008; Feroz, Hobson, and Bridges
2009; Feroz et al. 2013) — bound live points by ellipsoids. Use them
to approximate iso-likelihood contour. Sample from the ellipsoids.

X 0.505
0.516-490

Expand to be safe — at expense of sampling efficiency.
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Exploration

PolyChord (Handley, Hobson, and Lasenby 2015a; Handley,
Hobson, and Lasenby 2015b) — slice sampling walk, starting from a
randomly chosen live point.

= Start

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Two-dimensional Gaussian. 20 steps.
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Exploration

PolyChord (Handley, Hobson, and Lasenby 2015a; Handley,
Hobson, and Lasenby 2015b) — slice sampling walk, starting from a
randomly chosen live point.

—=— Start

0.8

0.6

0.4

200 steps. More steps to reduce correlation — at expense of

sampling efficiency.
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Things can go wrong...

« What if | don’t expand the ellipsoids enough?
« What if | don’t use enough steps?
« What if my exploration strategy isn’t actually drawing
independent samples from the constrained prior?
It would violate assumption and lead to faulty estimate of

evidence.

But how would | know?
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A new cross-check



What if we new the X of every sample?

Suppose we knew the X of every sample, X(£;). We could look at

_ X(£L))
5= Xie)

it should be uniformly distributed from 0 to 1 as each new X(L;)
should be uniformly distributed from 0 to X(£*).

You could test whether the f indeed followed a uniform
distribution (Buchner 2016).
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Histogram of the fractions f

Let’s run the same nested sampling run, but this time monitor the
fractions.

pvalue = 0.500

0.8

0.6

0.4

0.2

0.0

0.0 02 0.4 0.6 0.8 1.0
Volume fraction, 1-f=1-X/X"
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What do we know?

We don’t know that. We do know the likelihood of every new
sample, £;, and that X(L£) is a monotonic function.

So we can rank the my,. points by X(L;) by ranking them by L;.

The rank of every new sample, r, should be uniformly distributed
from 1 to nyj,.

It’s just as likely to be the worst, second worst, ..., second best,
best likelihood.

We can test whether the r indeed follow a discrete uniform
distribution.
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To compare the samples with the uniform distribution, we
compute a p-value form a Kolmogorov-Smirnoff test.

Sorry to sully a Bayesian algorithm with a p-value.
We use all the iterations and we test chunks of nj;,. iterations.

The latter stops biased periods in long runs being diluted by lots of
unbiased iterations.
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Histogram of ranks r

Let’s run the same two-dimensional Gaussian nested sampling run
but this time monitor the fractions and the insertion ranks, r.

20. Exact = —0.066

p-value = 0.500

0.0 0.2 0.4 0.

.6 08 1.0
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Detecting faults

This time, let’s make the sampling biased by sampling from the
wrong iso-likelihood contour — we find the correct one then
contract it by a (random) factor 0.8 £0.1.

p-value = 0.500

0.0 02 0.4 06 08 1.0
Volume fraction, 1 - f=1-X/X"
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Detecting faults

We see a tiny p-value and a biased overestimate of Z —
overestimated because the likelihoods that we draw are greater
than they should be.
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Correlations

The ranks r are not, however, independent — the distribution of

the live points only changes by one point every iteration.

If live points a are clustered together in X, insertion indexes in that
region are unlikely.

We ignore this complication. However, if anything, correlations
make the insertion ranks repel each other,
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Toy problems



Toy problems

In our paper, we introduce 4 toy problems. Here we discuss a

couple of them.

For each one, we will compute the evidence using MultiNest and

PolyChord, and p-values from our test.

We do 100 repeats. And good efr < 1 and bad efr > 1 exploration

settings.
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Gaussian

Multi-dimensional Gaussian likelihood

_re-p?
,C(O) x e 2072

We pick a uniform prior from 0 to 1 for each dimension.

The analytic evidence is always log Z = 0 since the likelihood is a
pdf in ©, modulo small errors as the infinite domain is truncated
by the prior.

We pick u = 0.5 and a diagonal covariance matrix with o = 0.001
for each dimension.
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MultiNest. Gaussian, log Z =0

Tiny p-values and biased results shown in red.

Smaller efr < stricter run

efr d log Z Inaccuracy Bias p-value Rolling
0.10 2 —0.0040.10 —0.04 —0.47 0.50 0.49
0.10 10 0.01+0.23 0.04 0.48 0.59 0.60
0.10 30 0.38 4 0.41 0.93 10.56 0.52 2.7-1074
0.10 50 2.08+0.52 3.98 41.25 0.38 45.10"%
1 2 —0.00£0.10 —0.04 —0.46 0.52 0.49
1 10 0.57+0.23 2.43 26.07 0.21 1.2-1074
1 30 2.3540.40 5.83 63.82 0.23 22-107%3
1 50 4.06 +0.52 7.81 92.99 0.30 1.3- 1073
10 2 —64.75+0.11 —532.44 —6.95 7.7-1073 0.06
10 10 2.8140.23 12.30 150.55 2.1-107¢  1.7-107"
10 30 4.30 4 0.40 10.75 174.47 0.02 3.1-107%8
10 50 6.04+0.52 11.66 197.79 0.08 1.1-107%3
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PolyChord. Gaussian, log Z = 0

Tiny p-values and biased results shown in red.

Smaller efr < stricter run

efr d log Z Inaccuracy Bias p-value Rolling
0.50 2 0.0140.11 0.11 1.03 0.54 0.60
0.50 10 —0.00=+0.23 —0.01 —0.10 0.48 0.52
0.50 30 —0.06=+0.41 —0.15 —1.61 0.54 0.57
0.50 50 —0.05+0.52 —0.10 —0.85 0.58 0.51
1 2 —0.024+0.11 —0.19 —1.96 0.42 0.48
1 10 —0.04+0.23 —0.17 —2.20 0.55 0.59
1 30 —0.8340.41 —2.06 —20.73 0.61 0.46
1 50 —2.48+0.52 —4.73 —54.22 0.49 0.59
2 2 —0.0140.11 —0.12 —0.89 0.47 0.53
10 10 2.2040.23 9.50 30.29 0.13 0.22
30 30 48.3740.64 112.25 70.58  8.2-10710 0.02
50 50  69.7443.05 23.31 106.51 8.0-107%8  14.107°
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Gaussian shells

This multidimensional likelihood is
L(0) = shell(©; ¢, r, w) + shell(©; —c, r, w)
where the shell function is a Gaussian

shell(@;c, r,w) = ;e—(IG—C\—r)Z/(Zw%'

\V2Tw

The highest likelihood region forms a shell of characteristic width
w at the surface of a d-sphere of radius r.

With uniform priors between —6 and 6, the analytic evidence is
approximately,

Z = 2(|x|?""S4/12¢
where Sy is the surface area of an d-sphere and {|x|?~") is the

(d — 1)-th non-central moment of a Gaussian, A/ (r, w?).
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MultiNest. Gaussian shells,

log Z = —1.75, —14.59, —60.13, —112.42

Tiny p-values and biased results shown in red.

Smaller efr < stricter run

efr d log Z Inaccuracy Bias p-value Rolling
0.10 2 —1.7540.05 —0.06 —0.64 0.55 0.55
0.10 10  —14.5940.12 0.02 0.16 0.57 0.56
0.10 30 —59.61+0.24 2.11 24.29 0.37 7.3-107°
0.10 50 —110.1540.33 6.87 115.58 0.07 3.7-1072
1 2 —1.7140.05 0.79 8.52 4.7-1073 0.10
1 10 —13.92+0.12 5.57 65.88 0.02 1.1-1075
1 30 —57.57+£0.24 10.67 151.79 7.7-1073  1.4-107%
1 50 —107.97 +0.33 13.63 218.07 3.5-107%  3.6-107%
10 2 —1.7340.05 0.39 1.45 0.07 0.18
10 10 —11.734£0.11 25.56 32153 6.8-107"% 1.7-107"
10 30 —55.414+0.24 20.03 367.16  3.0-107° 9.3.10°%
10 50 —105.82+0.32 20.42 480.50 9.3-107° 2.2-107%2
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PolyChord. Gaussian shells,

log Z = —1.75, —14.59, —60.13, —112.42

Tiny p-values and biased results shown in red.

Smaller efr < stricter run

efr d log Z Inaccuracy Bias p-value Rolling
050 2 —1.7440.05 0.16 1.54 0.13 0.13
050 10  —14.5940.12 0.02 0.12 0.50 0.48
0.50 30 —60.124+0.25 0.03 0.29 0.56 0.55
0.50 50 —112.33+£0.34 0.27 2.65 0.40 0.58

1 2 —1.7540.05 —0.02 —0.30 0.01 0.01

1 10 —14.59+0.12 0.02 0.19 0.49 0.61

1 30 —60.4640.25 —1.36 —14.57 0.48 0.53

1 50 —113.52+0.34 —3.26 —34.47 0.50 0.51

2 2 —1.7440.05 0.06 0.43 6.1-107¢ 2.1-107°
10 10 —14.0540.12 4.42 15.01 0.09 0.09
30 30 —38.78+0.21 103.26 159.47  35-107° 5.2-1073
50 50 —64.20+0.63 103.63 93.31 52-107'2  38-1077
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Summary of toy problem

A lot of numbers...

« Less strict exploration settings or high number of dimensions
+ ... leads to a biased estimate of evidece

« ... often detected by tiny p-value by our test
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Example from cosmology



Cosmology

Handley considered Bayesian evidence for a spatially closed
Universe (Handley 2019a). Evidences from combinations of four
datasets were computed using PolyChord for a spatially flat

Universe and a curved Universe.

The Bayes factors showed that a closed Universe was favoured by

odds of about 50/1 for a particular set of data.

There were 22 NS computations in total (Handley 2019b).
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Cosmology

We ran our cross-check on each of the 22 NS runs finding p-values
in the range 4% to 98%.

THis does not suggest problems with the NS runs. The p-value of
4% is not particularly alarming, especially considering we
conducted 22 tests.

Flat Curved
Data p-value  Rolling p-value  p-value  Rolling p-value
BAO 0.89 0.82 0.07 0.05
lensing+BAO 0.72 0.54 0.19 0.43
lensing 0.26 0.14 0.04 0.64
lensing+SHyES 0.08 0.08 0.78 0.04
Planck+BAO 0.39 0.56 0.14 0.43
Planck+lensing+BAO 0.68 0.69 0.70 0.27
Planck+lensing 0.94 0.49 0.89 0.72
Planck+lensing+SHyES 0.92 0.92 0.33 0.82
Planck 0.81 0.69 0.84 0.88
Planck+SHoES 0.20 0.48 0.92 0.97

SHHES 0.59 0.59 0.98 0.98 38/45



Summary of examples

« Applied check to NS runs on several toy functions with
known analytic results in 2 — 50 dimensions

« Detect problematic runs for MultiNest and PolyChord for

many problems, settings and dimensions
« Easy to apply to realistic examples

« Problem detected by our cross-check usually corresponds to
biased estimate of the evidence, though in a few cases the

evidence estimate remains reasonable
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Speculation



During a run, we can make a sequence (of length nit) of birth
indexes — the iterations at which the point that died was born.

The insertion ranks we have been discussing are actually a lossless
compression of the sequence of birth indexes.

Niter

¢ nlive

possible sequences of insertion ranks

« There are not nji,! possible sequences of birth indexes —
points cannot die before they were born! At each iteration,
there are only njj, possible birth indexes that could become
the dead point = n;" possible sequences.
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A new summation?

The classic nested sampling estimator of the evidence uses

« The L of every dead point
+ The iteration at which each dead point died
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A new summation?

The classic nested sampling estimator of the evidence uses

« The L of every dead point
+ The iteration at which each dead point died

What if we used as well

+ The iteration at which each dead point was born
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A new summation?

The hypothetical improved estimator could

« Reduce variance

« Be more robust with respect to biases in sampling from the
constrained prior
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A new summation?

At the moment, we estimate Z from the statistical estimates of the
volume, {X} = X, X1, Xy, . ..

Z= [2(xDp(XNTTdX where Z({X}) = ¥ L1 (X~ Xis)

and we have 0 < X; < Xj_,

mive (X; \"™
X:| Xi1) =
p( ) | J 1) X <)(j—]>

j—1
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A new summation?

At the moment, we estimate Z from the statistical estimates of the
volume, {X} = X, X1, Xy, . ..

Z= [2(xDp(XNTTdX where Z({X}) = ¥ L1 (X~ Xis)

and we have 0 < X; < Xj_,

Nijve Xj e
Xi| Xi2q) = —
P(J| 11) I <Xj_1>

What if we condition on the insertion ranks?

A / Z({X})p ({X} | insertion ranks) [T dX

That is, what if we use p ({X} | insertion ranks) rather than just
p ({X})? Can we do it? It could be a kind of Rao-Blackwellization.
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Simulating from p ({X}) was easy.
Simulating from p ({ X} | insertion ranks) isn’t so straight-forward.

On the other hand, it doesn’t require any likelihood evaluations.
So even if it is slightly involved, it probably won’t affect the overall

computation time for realistic problems.

If you want to solve this problem, let’s talk!

44/45



+ Nested sampling is a popular algorithm for computing
Bayesian evidence

« We developed the first test of single nested sampling runs
+ Appears to work nicely on toy and realistic problems
+ Could become an important part of nested sampling analysis

+ Could become a best practice to apply the check whenever
using nested sampling

. Hints towards a better estimate of the evidence
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