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Background



What is that?

A new particle? or just a �uctuation?

How can we characterise our uncertainty?
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Another 750 GeV?

or something real? Should you write a paper about it? Announce a press
conference? Start writing your Nobel prize speech?
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How can we tell?

We need a statistical framework for treating our uncertainty.

1. Frequentist

2. Bayesian

Let’s review them and compare results from them applied to realistic
problems.
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Frequentist



What is probability?

Probabilities are not degrees of certainty or belief.

Probabilities are frequencies at which events occur in identical repeat
experiments.

P (A) = lim
N→∞

nA

N
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What can we do?

We cannot quantify our uncertainty about the resonance.

We can attempt to control the frequency at which we would make a
type-1 error.

Type-1 error: Reject null hypothesis when it is true.

We must specify a null hypothesis, H0, and a desired type-1 error rate, α.
We reject H0 at a pre-chosen signi�cance α or we do not.

The rate α (implicitly) chosen to be about 10−7 (5σ) in particle physics.
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Test-statistics

We construct a test-statistic that measures discrepancies between data
and the null hypothesis, e.g. the log-likelihood ratio,

q ≡−2ln
maxθ1 P (D |M1,θ1)

maxθ2 P (D |M0,θ2)

This involves numerical optimisation of the likelihood function over the
models parameters θ.

In some settings, particular test-statistics can be shown to be the most
powerful. The log-likelihood ratio is the most powerful one for
comparing simple hypotheses.
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Likelihood function

Probability (density) of data, D , given a particular model, M , with
parameters θ

P (D |M ,θ)

Typically well-de�ned and uncontroversial.

When used as a function of the parameters known as the likelihood
function.

When used as a function of the data known as a sampling distribution.
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Likelihood function for resonance search

Our data is binned. The likelihood is a product of Poissons, one for
each bin

P (D |M ,θ) =
∏

i

e−λiλ
oi

i

oi !

where the expected number of events depends on the model
parameters, λ=λ(θ).
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P-values

The probability of obtaining a test-statistic at least as extreme as the
one we saw, if the null hypothesis was true

p-value= P
(
q ≥ qObserved

∣∣H0
)

If p-value<α, reject H0

This is not a continuous measure of our con�dence in H0 — it was a
means to controlling the type-1 error rate.

It is common nevertheless to interpret p as a measure of our con�dence
in H0.

10/42



Z-values

Conventional to convert p-value to Z -value (the number of sigma):

Z =Φ−1(1−p)

where Φ is the cumulative distribution function of a standard normal.
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Global or local?

If the data had been di�erent, we would have constructed a resonance
model with a di�erent mass to match the di�erent data.

We would have looked elsewhere.

Global p-values account for this look-elsewhere e�ect.

Local p-values do not. They assume that we would only test particular
parameters.
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Bootstrap

We could calculate p-values by bootstrap:

1. Perform a toy experiment — sample data from the null hypothesis

2. Calculate our test-statistic — this requires maximization of the
likelihood function

3. Find fraction for which q > qObserved

This could be numerically challenging for small p-values, as the
probability that q > qObserved would be small! We would need about
O (1/p) toy experiments.

Maximizing the likelihood function could be numerically expensive for
models with many parameters.
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Gross-Vitells

We calculated global p-values with Gross-Vitells [1] — a powerful
semi-analytic technique.

It permits us to instead look for q > u, where we may choose u

ourselves. This avoids the O (1/p) scaling of the number of toy
experiments.

For resonance searches with an unknown mass and strength,

Global p-value≈ 1
2 P

(
χ2

1 > q
)+Ne−q/2

where N must be found using toy experiments. The formula must be
modi�ed if the width was also unknown.
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Asymptotic formulae

For resonance searches, there is an asymptotic formula for the local
p-value that neglects look-elsewhere e�ects.

The formula makes use of Wilks’/Cherno�’s theorem. Assuming only
positive signals [2]

Local p-value= 1−Φ(p
q
)

where Φ is the cumulative distribution function of a standard normal
distribution.
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Bayesian



What is probability?

Probabilities are degrees of belief about any proposition.

There is a unique rule for updating them in light of information — Bayes’
theorem.

P (A |B) = P (B | A)P (A)

P (B)

Bayesian statistics⇔ probability theory
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What can we do?

We can simply update our relative belief in models in light of data. For
resonance searches, we update our belief in the signal + background
model relative to the background only model.

The factor that updates our belief is a Bayes factor [3].

Bayes factor= Relative belief after data
Relative belief before data

B = P (D |M1)

P (D |M2)
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Don’t need to specify priors for the model

The Bayes factor updates our prior odds

P (M1 |D)

P (M2 |D)
= B × P (M1)

P (M2)

Ordinarily, we don’t specify them — let the reader perform the �nal
multiplication. To compare with the p-value, though, we assume equal
prior odds and �nd

P (M0 |D) = 1

1+B

This is the plausibility of the background model in light of data.
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How do we do it?

The numerator and denominator are so-called Bayesian evidences. For a
model with parameters θ,

P (D |M) =
∫

P (D |M ,θ) p (θ |M)dθ

The factor p (θ |M) is our prior for the model’s parameters.
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E�cient integration

That integral could be di�cult, especially if the model contains many
parameters

For a few parameters, (adaptive) quadrature might su�ce, especially if
any modes in the integrand are treated specially. In general, a dedicated
algorithm might be necessary — e.g., nested sampling [4].
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Occam’s razor

The Bayesian evidence contains an automatic Occam’s razor. Consider
one-dimensional continuous data.

∫
P (D |M)dD = 1.

Complicated models make di�use predictions. They squander their
probability mass away from the observed data and are penalized.
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Priors

What prior should I pick [5]?

Prior densities transform covariantly. A �at prior doesn’t necessarily
re�ect ignorance — �at in which parameterisation!

p (x) = const. ⇒ p
(
x2)∝ 1

x
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Priors

What prior should I pick [5]?

Subjective — anything goes
The prior represents your belief. That’s it. There are no logical
constraints on priors [6].
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Priors

What prior should I pick [5]?

Subjective — elicit priors from experts
There are no rules but not everyone’s prior is equal. Consult experts —
who draw upon their knowledge and experience — to construct a
prior [7].

22/42



Priors

What prior should I pick [5]?

Objective — Jaynesian

Jaynes’ robot [8]. Priors are uniquely determined by your state of
knowledge. Thus scientists with the same background knowledge
construct the same priors.

There are particular rules — e.g., the principle of indi�erence,
symmetry groups and maximum entropy.
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Priors

What prior should I pick [5]?

Objective — default/reference priors
“Ignorance” is de�ned with respect to what could be learned in a
particular experiment.

Priors are constructed that express ignorance by maximizing what you
expect to learn in that experiment [9].
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Priors

What prior should I pick [5]?

Robust analysis
Sympathetic to Jaynesian approach. Our prior knowledge isn’t
su�cient to uniquely determine a prior.

Check sensitivity to a class of priors that could reasonably be in
agreement with our prior knowledge [10].
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Can more data help?

A few results about the role of priors in the asymptotic limit:

1. Under mild assumptions, there are theorems demonstrating that
the posterior for the true model converges to one [11]

2. The impact of the breadth of the prior doesn’t necessarily diminish
as we collect data (Bartlett-Lindley paradox [12]).
If a model contains a �at prior for a parameter on 0 to L, the
evidence is typically penalized by

P (D |M) ∝ 1

L

3. The Je�reys-Lindley paradox [13, 14] shows Bayesian and frequentist
results con�ict even in asymptotic limit
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From quantum mechanics, we learned an antidote to disputes about
interpretations.

Shut up and calculate.
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Results from DAMPE



What is that at 1.4TeV?

You know this well [15]. Let’s turn the (statistical) handle!
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Models

1. A single power law

2. A smoothly-broken power law

3. A smoothly-broken power law and with a signal from annihilating
DM particles of mass mχ, predicting a half-Gaussian feature of
amplitude A and width σ

26/42



Best-�ts
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Results

Very di�cult to argue that there was strong evidence for DM.

1. Smoothly-broken power law≫ single power law by Bayesian and
frequentist measures — B ≈ 1010 and a tiny p-value

2. Smoothly-broken power law ' smoothly-broken power law + DM

For the latter, we found B ≈ 2, but was sensitive to our choices of prior.
The maximum possible Bayes factor was B ≈ 500.

The global Z -value was about 2.3σ, whereas local was about 3.6σ.
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Results from toy Higgs search



Higgs discovery

The most famous resonance search of them all!

In 2012 ATLAS and CMS observed a new boson in several resonance
searches.
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Toy problem

Let’s use the search for the Higgs in the diphoton channel by ATLAS with
25/fb [16] as a toy problem.
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An important search for the discovery of the Higgs.
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Background model

There is a monotonically falling background.

We could describe it by a basis of polynomials (e.g. Bernstein) but so
that we can perform many calculations, we just use a �xed background
and neglect parametric uncertainties in it.
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Signal model i

We model the signal predicted by a Higgs as a Gaussian centred at mh .

The width was the experimental resolution of about 1.5GeV.

We speci�ed the strength relative to the Standard Model prediction (at
125GeV),

µ= e�ciency × cross section
(e�ciency × cross section)SM @ 125GeV

This is an approximation as we did not model dependence of e�ciency
or cross section as functions of Higgs mass.
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Signal model ii

There were thus two unknown parameters describing the location and
strength of the resonance, mh and µ.
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Priors

For our Bayesian calculations, we must place priors on mh and µ. We
experiment with several choices.
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Priors
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Broad priors (log and �at) and narrow ones representing speci�c prior
knowledge.

Going beyond the range searched for the experiment (100 – 160GeV)
could represent our belief but only dilutes evidence for a signal.
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Priors
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We vary the breadth of the log prior for the signal strength, and the
shape of the prior.
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Data and pseudo-data

We use the real 25/fb collected by ATLAS [16].

We sample our own pseudo-data from the background model and the
signal + background model with µ= 1, mh = 125GeV.
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The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.
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Evolution of p-value and posterior as we collect data
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Observed by ATLAS

The posterior slowly approaches 1 when the background model is
correct
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and zero when the signal model is correct, though in this case there is an
extremely mild preference for the background model until about 10/fb.
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The p-value makes a random walk between 0 and 1 when the
background model is correct
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and when the signal model is correct, it makes a (noisy) walk towards
zero.
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Preference for the wrong model?

The signal model was the true one but posterior rose from 0.5 to favor
the background!

10−3 10−2 10−1 100 101 102 103

Integrated luminosity/fb

0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r
o

fb
ac

kg
ro

u
n

d
o

n
ly

Background + signal

MC realization

Median ±1σ

Observed by ATLAS

Poisson �uctuations in the background are an economical explanation of
signals as s ≤–∼

p
b. The signal model requires tuning. Thus mild

preference for background model.
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Comparison between p-value and posterior

We performed about a million pseudo-experiments.
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The posterior of the background model about 102 – 103 times greater
than global p-value!
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The Bayes e�ect

The magnitude of the e�ect greater than the well-known look-elsewhere
e�ect.
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Global signi�cances reduced by 1 – 2σ.
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Prior dependence

We checked many priors. The e�ect could be reduced but remained
important.
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See paper [17] for full discussion about prior dependence of this e�ect.
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Conclusions



1. Weak evidence for DM from DAMPE

2. Detailed comparison of Bayesian and frequentist methods in
resonance searches in toy experiments

3. Posterior ultimately converged to 0 or 1; p-value makes random
walk if H0 correct

4. p-values overstate evidence against the null! p-value≪ posterior
of background model

5. Checked that the e�ect was robust with respect to several choices
of prior

6. When looking at an anomaly, we must remember the
look-elsewhere e�ect and the Bayes e�ect
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