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Experiments

My background is beyond the Standard Model physics. An
experiment to me could be e.g.

• Measurements of SM processes at the LHC

• Search for new particles at the LHC

• Search for dark ma�er in underground detectors

• Search for loop corrections from massive new particles in
precision measurements

I know LHC also used for its hadron physics capabilities.
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Why should we get the most out of them?

The experiments are time consuming and expensive, o�en once in
a generation.

1. We’ve won the funding — about $10 billion for LHC.

2. We’ve built the experiment — about ten years for LHC.

3. We’ve collected the data — about twenty-five years for LHC.

4. What do we need to publish to maximise reuse of the results
from the experiment?

Let’s get every drop of science we can out of this time and money.
That means, enabling other scientists to reuse the experimental
results now and in the future.
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What is an experiment?

Let’s focus on individual analyses (e.g. LHC experiment involves
thousands of these). In an analysis, we are looking at some portion
of the data x that could come from a data generating model, M.

The model typically must describe

• Underlying physical process, e.g. the Standard Model or just
QCD

• Detector and experimental e�ects

We o�en want to test models or measure their parameters.
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What is an experiment?

The predictions from the model are uncertain because

• Physics fundamentally non-deterministic, e.g. quantum
mechanics & quantum field theory

• Uncertainties in computing predictions from the model,
e.g. finite order in perturbative calculations etc

• Uncertainties in detector and experimental measurements
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What is an experiment?

Because of the uncertainties, we would end up with a random
draw from a model if the model were true. We call the
mathematics describing the relationship between the random
observations and the model the statistical model.

So for our purposes, an experiment is a draw of data that could come
from a statistical model of interest and that leads to statistical tests or
estimates based on the statistical model

So publish the statistical model and the observed data!
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What is a statistical model?

Mathematically, the statistical model may be represented by a
probability density function (pdf)

p(x |M)

This tells us what data we could get from a model.
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What is a statistical model?

E.g., a Gaussian for one-dimensional data

p(x |M) =
1√
2π

e−
1
2 x

2

If that model were true, every repetition of the experiment would
be another draw from this distribution.

−3 −2 −1 0 1 2 3
Data, x

pd
f

Statistical model
Observations —
random draws
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What is an experiment?

Having got the data, we then make our inferences using our
statistical models. E.g., computing p-values and confidence
intervals are common (Cowan 1998; James 2006).

Higgs discovery p-value < 10−7, mh = 125.7± 0.7 GeV etc.
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Likelihood principle

Why do we need p(x |M) and xObserved? Perhaps the likelihood
function (Cousins 2020)

Likelihood ≡ p(x = xObserved |M)

would su�ice? A�er all, we don’t need to consider data that
weren’t observed, do we?

This is the likelihood principle (Berger and Wolpert 1984). However,
that intuition and the likelihood principle are violated in
frequentist statistics.
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Statistical approaches

To allow Bayesian and frequentist approaches, we need the whole
statistical model.

• Bayesian approach: condition only on observed data e.g.

P(M | x = xObserved) ∝ p(x = xObserved |M)

Automatically satisfies likelihood principle and likelihood
alone enough.

• Frequentist approach: compute tail probabilities e.g.,

p-value =
∫

λ(x)≥λObserved

p(x |H0) dx

for some choice of test-statistic λ(x). Automatically violates
it and requires whole statistical model.
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Statistical approaches

Futhermore, to simulate experiments we need the whole statistical
model. This enables

• Computation of p-value without asymptotic assumptions
about the statistical model

• Simulation based inference in Bayesian se�ing, e.g.,
Approximate Bayesian Computation

• Simulation based cross-checks to validate statistical
procedures



12/24

For which parameters?

We’ve agreed that we need to give a mathematical representation
of a model that could generate the observed data. But models have
unknown parameters!

• Parameters of interest, Θ, e.g. the unknown masses and
couplings of the particles.

• Nuisance parameters, Φ, describing detector and systematic
e�ects

So let’s in fact publish the dependence on those parameters too,

p(x |M,Θ,Φ)
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For which parameters?

Di�erent distribution for each choice of parameters. Need to
preserve whole dependence p(x |M,Θ,Φ)

Data, x Paramete
r, µ

pdf

Data, x Paramete
r, σ

pdf

E.g. Gaussian of unknown mean and standard deviation N (µ, σ2).

Statistical model describes relationship between potential
observations and the unknown parameters of the model.
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Which statistical model?

Which statistical model? Physicists are building new models with
new particles all the time.

• Could publish more than one statistical model

• Publish “model fragments”. Break the model down into
distinct components to allow it to be modified to describe new
models

• Express the statistical model in a convenient parameterization

Hopefully, we can then go from model a to model model b in the
future

p(x |Ma,Θa,Φ)→ p(x |Mb,Θb,Φ)

This is known as recasting or reinterpretation (Abdallah et al. 2020).
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Parameterization

In order to aid reinterpretation, we should chose a convenient
parameterization.

For many physics models, the statistical model depends on the
model and parameters only through several pseudo observables

p(x |M,Θ,Φ) = p(x |m(Θ), σ(Θ), Γ(Θ),Φ)

E.g., here the pseudo observables are masses m, cross-sections σ

and decay widths Γ. So publish

p(x |m, σ, Γ,Φ)

Future users can map from their model to these pseudo
observables.



Practical considerations and tools
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Serialising a statistical model

We need to write the statistical model to disk in a format that can
be loaded and reused in the future. There are tools

• Ideally, machine and human readable with an unambiguous
declarative specification

• If you work with root, publish a RooWorkspace

• If you work with binned data, follow the
HistFactory (Cranmer et al. 2012) specification using
e.g. pyhf (Heinrich et al. 2021)

See our paper (Cranmer et al. 2021) for more discussion of tools and
formats.
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Depositing observed data

Data may be stored in online repository (Roche et al. 2014)

e.g. HEPData (Whalley 1989; Maguire, Heinrich, and Wa� 2017) or
Zenodo.

This is now standard practice in high-energy physics. Whatever
tools/platforms you use, try to be fair: Findable, Accessible,
Interoperable, and Reusable (Wilkinson et al. 2016).
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Open or closed

Technical consideration in representing statistical models:

• Open world: anything goes, build it how you like.

• Closed world: allow models to be built only from a finite set
of building blocks. Simple e.g. the model is a linear
combination of Gaussian distributions

Open world Closed world



Applications
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Applications

We discuss many applications of published statistical models
familiar to us in our paper (Cranmer et al. 2021):

• Parton distribution functions

• Higgs boson measurements at the LHC

• Searches for new particles at the LHC

• Heavy flavor physics

• Searches for dark ma�er

• World averages

• Global fits
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Applications

We discuss many applications of published statistical models
familiar to us in our paper (Cranmer et al. 2021):

• Parton distribution functions

• Higgs boson measurements at the LHC

• Searches for new particles at the LHC

• Heavy flavor physics

• Searches for dark ma�er

• World averages

• Global fits→ look at this one since I am most familiar with it
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Global fits

In a global fit, we want to

• Collate many experimental measurements and searches

• Re-interpret them in particular models of interest

• Find which models and parameters are favoured by data

• Find what the models predict for future experiments
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Example of global fit

Take the minimal supersymmetric model. Build statistical model
from

• Higgs measurements at the LHC

• Direct searches for supersymmetric particles at the LHC

• Dark ma�er density

• Null results of direct and indirect searches for dark ma�er

• Electroweak precision observables

• Flavor observables

Fit model to it. Find allowed parameters, masses, etc.
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Example of global fit
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2 ẽR ẽL τ̃1 τ̃2 ũR ũL b̃1 b̃2 t̃1 t̃2 g̃

M
as

s
(G

eV
)

Particle

BayesFITS (2012)

1σ credible regions
2σ credible regions
Posterior mean

Goodness of fit and preferred masses in a minimal supersymmetric
model (Fowlie et al. 2012) from statistical model built from public data.
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Benefit of public statistical models and data

If we must construct statistical models ourselves

" Make approximations — could be crude, lose power of data
" Make errors — hopefully not but somewhat inevitable, results

can be hard to validate
" Time consuming — challenging undertaking performed by big

teams — see e.g. GAMBIT (Athron et al. 2017)

Benefit of public statistical models recognised as early as
2006 (Ruiz de Austri, Tro�a, and Roszkowski 2006)

. . . it would be easy to incorporate the full likelihood functions from
various experimental measurements if they were available. However,

even though the actual measurements contain much more useful
information, most measurements in particle physics experiments are

presented only by the mean and the standard deviation . . .



24/24

Summary

• Let’s maximise the impact and future re-use of expensive
experiments!

• Statistical models and the observed data should be preserved
and published

• There are technical solutions to achieve this

• The parameterization and fragments of the statistical model
should be chosen carefully to maximise reuse
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