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Context

I am a particle physicist phenomenologist
I began my Ph.D. around start of Large Hadron Collider
(LHC) in 2009
Focused on statistical analyses of supersymmetric models in
light of first LHC data and direct searches for dark
matter (Fowlie, 2013)
Early in Ph.D., studied statistical methods in physics from
these two books
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Searches for new physics

Want to search for a signal on top of a noisy background

Signal model usually parameterised by an effect size, e.g., a
cross section for the production of a new particle

Background model often equivalent to effect size = 0

Could be nuisance parameters describing systematic
uncertainties

Signal model could have other unknown parameters, e.g. the
unknown mass of a new particle
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Statistical practices in searches for new physics

In particle physics, experimental results of searches for new
particles are shown by

Confidence intervals for effect size (e.g. cross section) and
other parameters of interest

P-values for discovery of new particles

This is done through

Statistical recipes using Wilks’ theorem; see Cowan et al.,
2011. These recipes are popular — about 500 cites/year

Exact prescriptions and conventions still debated — see
PHYSTAT-DM 2019, about 50 participant workshop for
conventions for dark matter searches

Led to recommendations paper on confidence
intervals (Baxter et al., 2021)
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Confidence interval

Definition
An interval found from a procedure that, under repeated
sampling, would include the true value of the unknown
parameter at a guaranteed rate (Neyman, 1937).

The desired rate is known as the confidence level, and 90%
and 95% are common choices

Procedures that guarantee that the rate is exactly the
confidence level are known as exact

Those that guarantee that the rate at least as great as the
confidence level are known as valid
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Search for dark matter

Result from LZ shown as a one-sided confidence interval (upper
limit) on cross section (an effect size) as function of mass (Aalbers
et al., 2023)
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Search for dark matter

Result from LZ shown as a one-sided confidence interval (upper
limit) on cross section (an effect size) as function of mass (Aalbers
et al., 2023)
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Search for dark matter

Result from LZ shown as a one-sided confidence interval (upper
limit) on cross section (an effect size) as function of mass (Aalbers
et al., 2023)
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Can of worms

Properties of confidence intervals are not always satisfactory,
even to adherents:

Flip-flopping — coverage spoilt by choosing between one- or
two-tailed limits after seeing data

False exclusion — confidence intervals exclude effect sizes at
rate of e.g., 5%. Including arbitrarily tiny effect sizes to
which the experiment had no power

Systematics — hard to handle nuisance
parameters describing systematic uncertainties
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Can of worms

On more general and philosophical grounds, in my opinion,

Whole frequentist edifice is full of thinking traps

Prone to misinterpretation — hard to interpret or
communicate a confidence interval (Morey et al., 2016)

Informal interpretation — that effect sizes outside CI are
ruled out or implausible — hard to justify
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Something else

Easy to criticise confidence intervals. Can we do better?

Obviously, I wanted to be Bayesian

The Bayesian analogue of the confidence interval — the
credible region (Jaynes, 1989a)!

Definition
A credible region, R, contains a specified percentile of posterior
probability, e.g., 95%,∫

R
p(θ | x, M) dθ = 0.95

for parameter θ, data x and model M.
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More worms!

In this context, credible regions are not much better

Depend on ordering rule — which region R?

This induces a dependence on parametrization

Sensitive to arbitrary aspects of the prior

Cannot tell us whether a model predicting particular mass
and cross section any better than background-only model

This is connected to fact that there is no duality between
testing and measurement
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What is the question?

For a while I was stumped.

If you don’t like the answer, perhaps you asked the wrong
question (Jaynes, 1989b)

What question do we want to ask?

We don’t like the credible region, because it answers the wrong
question. We don’t want to know the plausible parameters in a
dummy model of (mass, cross section).

The question is: how do choices of (mass, cross section)
compare to the background only model?
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Bayes factor surface

Definition
For parameters θ and data x, compute the Bayes factor

B10(θ) ≡
p(x | θ, H1)

p(x | H0)
,

Show results of search by contours of B10(θ). E.g., the contour of
θ for which B10(θ) = 1/10.

Does not depend a choice of prior, parametrization or
ordering rule

Directly tells us change in plausibility of model predicting
particular parameters θ relative to background only model
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Back to direct detection of dark matter

We compute the Bayes factor surface, as well as confidence limits
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Searches for supersymmetry

Because the idea is simple and general, it works in many other
cases. E.g., an LHC search for supersymmetric particles
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Cosmological inflation

Here is another example: models of inflation in light of Planck
measurements of the CMB
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Computational methods

There are often nuisance parameters, such that we cannot just
directly compute the Bayes factor surface; we need to marginalise

In searches for new physics, models are often nested.

This means that we can use a Savage-Dickey ratio (Dickey,
1971) to compute the Bayes factor surface

Compute posterior usually conventional methods, e.g.,
Markov Chain Monte Carlo

Use e.g., kernel density representation of posterior and
identity

B10(θ) =
p(x | θ)

p(x | θ0)
=

p(θ | x)
p(θ0 | x)

π(θ0)

π(θ)

where θ0 correspond to background-only model
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Specialised computational methods

Bayesian computation can be challenging. There is no reason
that machinery developed to compute posterior (e.g., MCMC)
should be appropriate for Bayes factor surface

What if, for illustration, we want to compute contours at e.g.,
B = 1/1000? Far into the tails of the posterior. We would
require an enormous effective sample size

I have a hunch that nested sampling (Ashton et al., 2022) may be
valuable here because it produces weighted samples from tails.
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Specialised computational methods

Bayesian computation can be challenging. There is no reason
that machinery developed to compute posterior (e.g., MCMC)
should be appropriate for Bayes factor surface

What if our models are not nested?

Computing a Bayes factor (e.g., by nested sampling) at each node
on a grid doesn’t sound great; can we do better?
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Specialised computational methods

Bayesian computation can be challenging. There is no reason
that machinery developed to compute posterior (e.g., MCMC)
should be appropriate for Bayes factor surface

What if, pre-data, we want to know median expected Bayes
factor surface assuming no new physics?

Can we use the Asimov trick and compute Bayes factor surface
with data = median from background only model?
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Connections

When I wrote the paper, I knew that

Bayes factor surface had been proposed as a tool to study
prior sensitivity — show the change in Bayes factor when
changing e.g., width of prior

Bayes factor function had been proposed (Johnson,
Pramanik, and Shudde, 2023) — one-dimensional and
motivations somewhat unclear to me

Since writing the paper,

I found the NANOGrav paper that uses a similar
construction

Samuel contacted me to bring to my attention relevant
works from the recent statistics literature
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A rose by any other name

Bayes factor surface

Bayes factor function

Support interval

K-ratio

Name will settle as idea matures
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Summary

Bayes factor surface — simple and intuitive way to
summarise searches for new physics

Shows change in plausibility of choices of model parameters
relative to background only model

Wide-ranging applications across physics and beyond

Idea popping up independently in various contexts

Computational methods and some properties (e.g.,
frequentist properties) in their infancy

A new tool to present results of searches for new physics!
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