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A tribute from ChatGPT

In the realm of stats, there’s a method we adore,
It’s called nested sampling, let me tell you more.
It’s a journey through likelihoods, a cosmic ride,
Exploring parameter space, with nothing to hide.

So let’s raise a glass, to nested sampling’s might,
A method that guides us through the statistical night.
With each iteration, we’re closer to the truth,
Nested sampling, we salute your statistical sleuth!



Overview

1 Opening up the applications

2 Opening up the errors

3 Opening up the live points

4 Opening up the constrained sampling



Opening up nested sampling

A year of opening up after the pandemic



Opening up nested sampling

A year of opening up after the pandemic

I jinxed it because after submitting title I was no longer able to travel



Opening up the applications



Origins [1]



Volume and compression

Estimate red area by random sampling

We really need at least one dart to fall in red region



That won’t work

Estimate volume V by fraction of darts that fall in red region

V̂ =
m
n

Error of order Wald [2]

∆V
V

=

√
1/V
n

For fixed fractional uncertainty, number of samples scales as 1/V
Need n ≳ 1/V at very least for reasonable estimate



NS for general compression computation

NS rips an exponential factor out of the problem

∆V
V

=

√
log 1/V
nlive

We expect though that number of samples

n =
nlive log 1/V

ϵ

Thus finally

∆p
p

=

√
log21/V

ϵn



NS for general frequentist computation

The p-value is the probability of observing data as or more
extreme than that observed, given the null hypothesis, H0,

p = P(λ ≥ λObserved |H0)

where λ is a test-statistic that summarises the data and defines
extremeness

For a discovery in high-energy physics, we require p < 10−7 as
extraordinary claims require extraordinary evidence

Compression from whole sampling space to region of size 10−7

Rejection sampling — throwing darts — requires too many
samples, especially for high dimensional data



NS for approximate Bayesian computation

What if our likelihood, L(x) ≡ p(dobs | x), is intractable?

Cost[Evaluating L(x)] ≫ Cost[Sampling d ∼ p(d | x)]

Approximate Bayesian computation

For example, sample x , d from p(x, d). Keep samples that lie
within ϵ-ball of observed data

Compression from whole joint space to ϵ-ball around observed
data

Rejection sampling requires too many samples, especially for
high dimensional data



NS for general compression computation

Consider joint distribution

p(x, d)

For Bayesian computation compress on parameter space, (x, d).
From whole prior, upwards in likelihood

For frequentist computation compress on sampling space, (x, d).
From whole sampling space, upwards in test-statistic [3]

For ABC compress on joint space, (x, d). From whole joint space,
towards ϵ-ball around observed data

NS tackles all these compression problems



Opening up the errors



NS errors

Powerful heuristic argument that NS error related to information
by

∆ logZ ≃

√
H
nlive

Standard deviation of Z available analytically from moments of X

We should be able to show that the analytic answer
approximately equals the heuristic one

Stdev[Z ]
Z

≃ ∆ logZ ≃

√
H
nlive



Approximate equivalence

Indeed, carefully expanding the sums, we can show their
approximate equivalence [4], provided that

Mean[log X ] ≫ Stdev[log X ]

If not, can drive differences between them

Agrees with Skilling’s original argument — that error estimate
holds if log X contains single narrow peak

The computations shed light on NS errors



Pathological cases

NS error estimates can diverge as number of iterations increases

Simple way of creating pathological cases

L(X ) ∝
f (log X )

X

where f is the density with infinite variance, e.g., a Cauchy
distribution

Finite evidence since

Z =
∫

L(X )dX =
∫

f (log X )d log X

Though because P(log X ) = f (log X ), this trick means that
Stdev[log X ] diverges



Opening up the live points



Sampling from the constrained prior

How can we find an independent sample from the constrained prior?

Required for our estimates of the volume, X

Region and step samplers are popular techniques

How do we know if they really work?

Failure to correctly sample from the constrained prior leads to
faulty estimates



What if we knew the X of every sample?

Suppose we knew the X of every sample, X (Li)

We could look at

fi =
X (Li)
X (L⋆)

This should be uniformly distributed from 0 to 1 as each new
X (Li) should be uniformly distributed from 0 to X (L⋆)

We could test whether the f indeed followed a uniform
distribution

But we don’t know the X of any samples



What do we know?

We do know the likelihood of every new sample, Li , and that
X (L) is a monotonic function

So we can rank the nlive points by X (Li) by ranking them by Li
The rank of every new sample, r , should be uniformly distributed
from 1 to nlive
It’s just as likely to be the worst, second worst, . . . , second best,
best likelihood

We can test whether the r indeed follow a discrete uniform
distribution [5]

The NS equivalent of R̂ diagnostic for MCMC — important check

Successfully diagnoses faulty runs and a feature in latest NS
software



Opening up the constrained sam-
pling



Machine Learning

Physicist’s perspective — statistics is an interface between theory and
experiment

Theory⇌ Statistics⇌ Experiment



Machine Learning

Many people are going to try to persuade you to replace statistics
with machine learning

Theory⇌Machine Learning⇌ Experiment

Should you listen?



Machine Learning

They might want to replace traditional theory activities e.g.,
model-building at the same time,

Machine Learning⇌Machine Learning⇌ Experiment

E.g., symbolic regression



Machine Learning

I haven’t quite seen this yet

Machine Learning⇌Machine Learning⇌Machine Learning

Maybe experiment is safe for now



How to combine statistics and machine learning?

Should we change how we learn?

No. Keep our statistical principles

We should tell machine how to learn; not the other way around

Should we change how we compute?

Not sure, lots of hype, though personally sceptical

Computation should be principled; how else could it be
trustworthy?

We require uncertainty quantification and methods that
generalise



How to combine statistics and machine learning?

Incorporate ML in well-defined mini-problems in our computation

ML

Traditional computation

Traditional statistics

Don’t sacrifice uncertainty quantification or reliability



Sampling from constrained prior

NS perfectly open to this synergy between principled
computation and ML

Mini-problem in NS: sampling from the constrained prior

You can do it more or less however you like

See for example, ref. [6, 7] for normalising flow based sampling
from constrained prior

Check results using insertion index test



Conclusions

Nested sampling, we salute your statistical sleuth!

Compression is a common problem; NS applicable to any
compression problem

Heuristic NS errors analysis is justified, though there are
pathological cases

Hidden information in live points allows cross check of NS runs —
use it

ML versus NS is false dichotomy; NS + ML possible by using ML
for sampling from constrained prior

Please see our review paper [8]



Nested sampling song I

(Verse 1)
In the realm of stats, there’s a method we adore,
It’s called nested sampling, let me tell you more.
It’s a journey through likelihoods, a cosmic ride,
Exploring parameter space, with nothing to hide.
(Chorus)
Nested sampling, oh what a thrill,
Searching for the best fit, we can’t sit still.
From the prior to the posterior, we navigate,
Finding the peak, it’s a statistical fate.
(Verse 2)
Like a detective, we start with a prior guess,
Sampling points, we’re on a quest, no time to rest.
Step by step, we dig deeper into the core,
Uncovering regions of likelihood we adore.
(Chorus)



Nested sampling song II

Nested sampling, oh what a thrill,
Searching for the best fit, we can’t sit still.
From the prior to the posterior, we navigate,
Finding the peak, it’s a statistical fate.
(Bridge)
As the iterations go by, the prior starts to shrink,
Leaving behind the most probable, it makes us think.
Evaluating evidence, quantifying the strength,
Nested sampling, it goes to any length.
(Chorus)
Nested sampling, oh what a thrill,
Searching for the best fit, we can’t sit still.
From the prior to the posterior, we navigate,
Finding the peak, it’s a statistical fate.
(Verse 3)
From astronomy to machine learning, it’s a game-changer,



Nested sampling song III

Revolutionizing science, like a cosmic rearranger.
With nested sampling, our minds are blown away,
Unlocking insights, with every passing day.
(Chorus)
Nested sampling, oh what a thrill,
Searching for the best fit, we can’t sit still.
From the prior to the posterior, we navigate,
Finding the peak, it’s a statistical fate.
(Outro)
So let’s raise a glass, to nested sampling’s might,
A method that guides us through the statistical night.
With each iteration, we’re closer to the truth,
Nested sampling, we salute your statistical sleuth!
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