

arXiv:1206.0264 [hep-ph]

BayesFits The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs Andrew Fowlie,¹ Leszek Roszkowski,^{1,2} et al.²

¹University of Sheffield, ²National Centre for Nuclear Research, Poland

BayesFITS methodology

We fit the CMSSM to experimental data with **Bayesian statistics**

Frequentist statistics considers the likelihood — the probability of obtaining the experimental data given the CMSSM's parameters **Bayesian statistics considers the the posterior** — the probability of the CMSSM's parameters given the experimental data Find the posterior with Bayes' theorem;

$p(m_0, m_{1/2}, A_0, \tan \beta | d) \propto \mathcal{L}(m_0, m_{1/2}, A_0, \tan \beta) \times \pi(m_0, m_{1/2}, A_0, \tan \beta)$

Requires that we articulate our prior knowledge of the CMSSM's parameters in the prior, $\pi(m_0, m_{1/2}, A_0, \tan \beta)$ We use an updated version of SuperBayeS package to perform a Bayesian analysis of the CMSSM's parameter space

CMS razor 4.4/fb SUSY search

CMS looked for jets and missing energy in 4.4/fb at $\sqrt{s} = 7$ TeV Discriminated against SM backgrounds with kinematic razor variables Resulting in exclusion on $(m_0, m_{1/2})$ plane of CMSSM We simulated expected numbers of CMSSM events in the hadronic bins at the event level

Calculated the likelihood at each point on the whole $(m_0, m_{1/2})$ plane — our **likelihood map** — with Poisson: $\mathcal{L} = e^{-s+b} (s+b)^o / o!$

Incorporated important systematic errors on SM background predictions

• Our 95% exclusion contour with the PL method with $\Delta \chi^2 = 5.99$ in good agreement

Likelihood from Higgs searches

Interpreted resonance as lightest Higgs in CMSSM Implemented result as Gaussian likelihood, with $\mu = 125 \text{ GeV}$, $\sigma = 2 \text{ GeV}$. Appreciable theory error in CMSSM Higgs mass calculation from e.g. missing orders, included as $\tau = 2 \text{ GeV}$

Likelihoods from Non-LHC constraints

WMAP7 constraint on the relic density of the neutralino, 🕻

$$\Omega_{\chi} h^2$$

Loop contributions to Δa_{μ} , $b \to s \gamma$ and $B_s \to \mu^+ \mu^-$ EWPO, e.g. M_W and $\sin \theta_{\rm eff}$

These constraints are included with Gaussian likelihood functions.

χ^2 breakdown

Andrew Fowlie

Log priors for 100 GeV $< m_0 < 4$ TeV and 100 GeV $< m_{1/2} < 2$ TeV **Linear** priors for $3 < \tan \beta < 62$ and $-7 \text{ TeV} < A_0 < 7 \text{ TeV}$ **Gaussian** priors, representing experimental measurements, for $m_t = 172.9 \pm 1.1 \, {
m GeV} \, {
m etc.}$

68% and 95% Bayesian credible regions for the CMSSM

The $\chi^2 = -2 \ln \mathcal{L}$

for best-fit points in four CMSSM scans **Dominant contribution is** from $\delta(g-2)_{\mu}^{SUSY}$, which is a poor fit So also consider sgn $\mu = -1$ and drop $\delta(g-2)_{\mu}^{\text{SUSY}}$ constraint

University of Sheffield

intervals (candlesticks) and posterior means for sparticle mass spectrum Higgs $\mathcal{O}(1.5 \,\text{TeV})$

a.fowlie@sheffield.ac.uk