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P-values

We can say a lot about p-values. Some good (Cousins 2018; Lakens
2021), some bad (Fowlie 2021; Wagenmakers 2007). Here I give only
some facts.

P-value
The p-value, p, is the probability of observing data as or more
extreme than that observed, given the null hypothesis, H0, i.e.,

p = P(λ ≥ λObserved |H0)

where λ is a test-statistic that summarises the data and defines
extremeness.
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P-values in high-energy physics

In high-energy physics, we want to discover new phenomena and
new particles. Perform null hypothesis test:

• H0 — Standard Model (SM) backgrounds only

• H1 — SM + new physics, e.g. Higgs boson or supersymmetric
particles

Original artwork Viktor Beekman and concepts Eric-Jan Wagenmakers

https://www.bayesianspectacles.org/library/
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P-values in high-energy physics

For a discovery we conventionally require a tiny global p-value of

p . 10−7 (5σ)

i.e., α ' 10−7 (Lyons 2013). In high-energy physics, we need to
compute tiny p-values.

Threshold in evidence — extraordinary claims require
extraordinary evidence — and imposes a 10−7 type-1 error rate.

Original artwork Viktor Beekman and concepts Eric-Jan Wagenmakers

https://www.bayesianspectacles.org/library/
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Choice of test statistic

Conventionally based on profiled likelihood ratio

λ =
p
(
x | Θ̂1,H1

)
p
(
x | Θ̂0,H0

)
where Θ̂0 are the best-fit parameters under H0 etc and x are the
data.

Optimal in simple cases (Neyman-Pearson lemma) and some
slightly non-simple cases (Karlin-Rubin theorem).

Won’t dwell on choice of test-statistic in this talk or how to compute
it from a given dataset, which could involve multi-dimensional
optimisation.

Take it as a given.
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Higgs discovery

Classic example. Higgs discovery in 2012 (Aad et al. 2012).

Wait until reach 5σ global. We need to compute tiny p-values.



How to compute small p?
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Illustrate problem with two-dimensional data, x.

Whole sample space

Ine�icient to sample from here!

Tiny area
corresponding
to p-value
Sampling here won’t tell us its relative size!

In reality, red region exponentially tiny. Illustrate with squares but
assume nothing about geometry/topology in problem or solution.
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Sample from whole sample space — Monte Carlo

Draw n samples from whole sampling distribution. Estimate p by
fraction of them that fall in red region

p̂ =
m
n
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Sample from whole sample space — Monte Carlo

Estimate red area by random sampling

We really need at least one sample to fall in red region.
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Sample from whole sample space — Monte Carlo

Error of order Wald (Brown, Cai, and DasGupta 2001)

∆p
p

=

√
1/p

n

Usual 1/
√

n statistical error scaling. For fixed fractional
uncertainty, number of samples scales as 1/p

Need n & 1/p at very least for reasonable estimate.
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Sample from target region

Try to sample from region in which λ ≥ λObserved.

Random sampling from target

Even if we could, that won’t tell us p!
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Asymptotics

If we have some more information, we can compute p analytically.

E.g., I know the red area is a box of side 0.05. p = 0.052.
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Asymptotics

If we have some more information, we can compute p analytically.

Sometimes, we know (or hope!) our problem satisfies certain
regularity conditions and large sample limit. We can apply
asymptotics (Cowan et al. 2011).

E.g., λ ∼ χ2. If you’re lucky, finding p a ma�er of calling the right
survival function from scipy.stats or root.

It might still be slightly involved, e.g., simulating to find unknown
constants in the Gross-Vitells (Vitells and Gross 2011) method
(though at a favourable threshold).



9/58

Asymptotics

If we have some more information, we can compute p analytically.

Wonderful. Right? But the conditions aren’t always satisfied.

We want generality. Generality is power to tackle any problem we
want.
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State of play for computing small p-values

• Sampling from the entire sampling space ine�icient.

• The region correspond to p is important but sampling from it
won’t tell us p!

• Asymptotics needn’t apply. When they do, the extra
assumptions yield quick answers.



Compression connection to Bayesian
computation
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Connection to Bayesian computation

As for p-values, we can say a lot about Bayes. Some good, some
bad. As before, only facts.

Bayes’ theorem decomposes

Likelihood× Prior = Evidence× Posterior

Posterior tackled by e.g., Markov Chain Monte Carlo. Method
works for ill-normalised distributions. Never need to know
evidence.

Original artwork Viktor Beekman and concepts Eric-Jan Wagenmakers
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Bayesian evidence

The Bayesian evidence o�en ignored, though enables Bayesian
model comparison (Kass and Ra�ery 1995), and so some e�ort
made to compute it e�iciently (Martin, Frazier, and Robert 2020).

Integral of the likelihood over the model’s parameter space

Evidence = Z =
∫
L(x)π(x) dx

High-dimensional integral. Not easy to compute.
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Don’t even think about it

�adrature won’t work in high-dimensions. Curse of
dimensionality. We would need O(ed) cells.
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Sample form the prior

Just try sampling from the prior!

Ẑ =
1
n

n

∑
i=1
L(xi)

for xi ∼ Prior. Doesn’t care about dimensionality!

But prior could be very di�erent from posterior! The problem is
compression. Most draws contribute nothing. Just like for
p-values.

Usual 1/
√

n scaling, but potentially terrible variance.
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Sample from the target

This won’t work either. Just like for p-values.

Heuristic (Neal 2008)
The posterior depends only weakly on prior. Evidence depends
strongly on it.

Thus hard to deduce evidence from posterior.

E.g., likelihood concentrated around θ ' 0 and zero outside
|θ| > 1. Extending prior range from |θ| ≤ 1 to |θ| ≤ 1000 makes
no di�erence to posterior. It changes evidence by factor 1000.



16/58

Asymptotics

Well, the posterior might be asymptotically normal (Bernstein-von
Mises theorem). Approximate the integral by a Gaussian! This is a
Laplace approximation.

• Fast — we know how to integrate Gaussians, just need to fit it
to the posterior

• But not reliable in so many problems of interest

• You’ll get a fast answer, maybe not a correct answer.
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State of play for computing evidence

• Sampling from the prior ine�icient — enormous compression.

• Posterior important, but sampling from it won’t easily tell us
the evidence.

• Asymptotics (e.g., Laplace approximation) won’t always hold –
we want generality.
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Sound familiar?

• Sampling from the prior whole sampling space ine�icient —
enormous compression.

• Posterior Region corresponding to p important, but sampling
from it won’t easily tell us the evidence p-value

• Asymptotics (e.g., Laplace Wilks’ approximation) won’t
always hold – we want generality.
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Path sampling

Path sampling could be the answer (Gelman and Meng 1998).

• Prior and posterior miles apart — enormous compression.

• Build a path — a sequence of distributions — between them.

• Evolve a collection of particles along that path.

You may be familiar with annealing — cool from the prior to the
posterior.
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Path sampling

Path sampling could be the answer.

• Prior Sampling space and posterior region corresponding to p
miles apart — enormous compression.

• Build a path — a sequence of distributions — between them.

• Evolve a collection of particles along that path.

You may be familiar with annealing — cool from the prior to the
posterior.
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Path sampling

Build a path of distributions

Path connects whole space to p-value

Solution — path sampling

Sequence of distributions from whole sampling space to the
p-value.
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Which path to the p-value?

Which path though? Don’t claim optimality. But what follows is
simple and it gets us there.
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Which path to the p-value?

Natural that the path of intermediate distributions are based on
contours of test-statistic

π?(x) ∝

π(x) λ(x) ≥ λ?

0 otherwise

for some threshold λ?. This is the constrained sampling
distribution.

We start at λ? = −∞ with the whole sampling distribution. The
threshold monotonically increases along the path, until we reach
the region corresponding to the p-value at λ? = λObserved.
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Which path to the p-value?

The survival function

X(λ?) ≡
∫

λ(x)≥λ?
π(x) dx

tells us the compression required to reach the threshold λ?.

Along the path, the survival function monotonically decreases
from X = 1 to the p-value at p = X(λObserved).
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Path sampling

Build a path of distributions

In
cre

as
ing λ

?

Contours of constant test-statistic, λ=λ?
Area = X (λ?)

Stop at p when λ? =λObserved
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How fast to travel on the path to the p-value?

We have the path. How fast should we go? How about controlling
the speed of compression through the survival function?

Take steps ∆X = const.?

• Start at X0 = 1. X1 = 1− ∆X . . . Stop at Xi = 1− i∆X ≤ p.

• Need ∆X ≈ p for any reasonable precision.

• Too slow. Would require 1/p iterations to reach p and we’re
back to 1/p scaling!
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How fast to travel on the path to the p-value?

We have the path. How fast should we go? How about controlling
the speed of compression through the survival function?

Take steps ∆ logX = const.

• Go faster. Constant exponential compression.

• Avoid 1/p.

• Let’s try that.
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How to find the path?

The sampling space could be complicated. It won’t be nice squares
like my pictures.

How on Earth can we evolve a collection of particles along path whilst
compressing at a constant exponential rate?

And how can we estimate the survival function along the way?



Nested sampling
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Nested sampling

Nested sampling (Skilling 2004; Skilling 2006) originally algorithm
for Bayesian computation — computes evidence and posterior
simultaneously.

• Evolves collection of nlive live points along path, to greater and
greater likelihoods test-statistics

• Evolution controlled by single user parameter — nlive

• Approximately constant exponential compression

• Statistical estimates of survival function along the way

• All about compression — no need to even talk about evidence
or posterior here
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General idea

• Sample n points from the sampling distribution

• Rank them by test-statistic

• Delete the least extreme half

You just compressed by factor 1/2! Repeat it i times and you’ll
achieve exponential compression 1/2i at a constant rate!
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Nested sampling

0. Draw nlive samples from the whole sampling distribution —
the live points

1. Denote the smallest test-statistic among the live points by λ?

2. Replace that live point by one drawn from the constrained
sampling distribution

π?(x) ∝

π(x) λ(x) ≥ λ?

0 otherwise

3. Make a statistical estimate of X(λ?) from this procedure

4. If λ? ≥ λObserved, we reached p. Stop. Else go to 1.

So we evolve a set of nlive live points to more and more extreme
test-statistics, replacing one live point at a time.
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Nested sampling

0. Draw nlive samples from the whole sampling distribution —
the live points

1. Denote the smallest test-statistic among the live points by λ?

2. Replace that live point by one drawn from the constrained
sampling distribution

π?(x) ∝

π(x) λ(x) ≥ λ?
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4. If λ? ≥ λObserved, we reached p. Stop. Else go to 1.

So we evolve a set of nlive live points to more and more extreme
test-statistics, replacing one live point at a time.
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1. Uniformly distributed live points

2. Identify least extreme point

3. Update threshold

4. Draw replacement

Nested sampling

Live Dead Replacement
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Compression

Make a statistical estimate of X(λ?) from this procedure

How? We know that X0 = 1. How much do we expect X to
contract when we replace the least extreme test-statistic?
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Estimating the compression

Drawing from the constrained sampling distribution means live
points are distributed uniformly in X from 0 to X(λ?).

In other words,

yi =
X(λi)

X(λ?)

for i = 1 to nlive are uniformly distributed from 0 to 1.
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Estimating the compression

The largest one, t ≡ max yi , gives us the compression.

Compression
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Estimating the compression

What can we say about t? We can write the pdf!

p(t) =
(

nlive

1

)
· tnlive−1 · 1 = nlivetnlive−1

where the factors are combinatorial, the probability of nlive − 1
samples less than t , and lastly the probability density of a point
at t .

This is a β(nlive, 1) distribution.
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Estimating the compression

We can find the expected compression:

E[log t] = nlive

∫ 1

0
tnlive−1 log tdt = − 1

nlive

Look at log t because logarithms add and expectation is linear.

Thus we may estimate that at iteration i

X(λ?
i ) =

i

∏
j=1

tj ≈
i

∏
j=1

e−1/nlive = e−i/nlive

This is the desired constant exponential compression! and a way to
estimate it!

The user parameter nlive controls the speed and consequently the
precision.
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Estimating the compression

We don’t know X but make statistical estimates of it along the path

θ1

θ
2
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Test statistic, λ
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p

i /n
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Stopping

NS builds a path straight to the p-value in roughly equal steps of
∆ log p ' 1/nlive. We just stop once we’re there.

Stop as soon as λ? ≥ λObserved at iteration niter. Estimate p from
compression

p = X(λObserved) '
niter

∏
i=1

e−1/nlive = e−niter/nlive

Thus NS breaks tiny p into a product of moderate factors.
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Assumptions

Basically no assumptions about problem, no asymptotics, completely
general

• Assumes we can evaluate the test-statistic

• Assumes we can draw from the sampling distribution

• Plateaus in the test-statistic (regions of sample space where it
is constant) cause subtelty but easily overcome (Fowlie,
Handley, and Su 2020b).

For it to work e�iciently, further assumes we can e�iciently and
correctly draw from the constrained sampling distribution
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Uncertainties

Let’s look at the errors from the β distributions. As
log t ∼ β(nlive, 1),

Var[log t] =
1

n2
live

As log p is estimated as the sum of niter independent log t draws,

Var[log p] = niterVar[log t] =
niter

n2
live

=
log 1/p

nlive

where we plugged in the estimate of log p. Finally,

∆p
p

= ∆ log p =

√
log 1/p

nlive

Note the usual 1/
√

n scaling.
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Uncertainties — logp not p

Exponential compression. Estimating log p not p.

It is log p that has approximately symmetric, Gaussian uncertainty.

Just fine. When p is small, it is magnitude log p that ma�ers.
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What did we gain? — Theoretical speedup

For nested sampling,

∆p
p

=

√
log 1/p

nlive

For Monte Carlo,
∆p
p

=

√
1/p

n

Looking good. Ripped an exponential factor out of the problem.
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Closer look at theoretical speedup

We need to write the behaviour in terms of test-statistic
evaluations rather than nlive,

n = average calls per iteration · niter =
niter

ε

We expect though that niter = nlive log 1/p from the exponential
compression,

n =
nlive log 1/p

ε

Thus finally,

∆p
p

=

√
log2 1/p

εn
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Closer look at theoretical speedup

For fixed fractional uncertainty on p, we expect to obtain a
speed-up versus MC

Evaluations for NS
Evaluations for MC

=
(log2 1/p)/ε

1/p

Massive gains for small p! Provided that the e�iciency factor ε

doesn’t spoil things.



Exploration
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Exploration

So far nothing depended on dimension! Let alone geometry! I
glossed over a detail though.

• How to draw a replacement live point from the constrained
sampling distribution, λ > λ??

• Involves trial and error, and some ine�iciency (the factor ε)

• Re-introduces dependence on dimensionality of the sampling
space (though it needn’t be exponential)
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Exploration

• This requires an exploration strategy. Fortunately, the current
set of live points can guide the exploration.

• There are well-established implementations of nested
sampling that do this, developed and used for Bayesian
inference in other scientific se�ings

• There are potentially optimisations for this se�ing

• Correctness can be checked (Fowlie, Handley, and Su 2020a)
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Rejection sampling

MultiNest (Feroz and Hobson 2008; Feroz, Hobson, and Bridges
2009; Feroz et al. 2013) — bound live points by ellipsoids. Use them
to approximate the λ? contour. Sample from the ellipsoids.

Ellipsoid sampling

Region sampling

Dead

New

Reject

Random walk

Step sampling

Start

End

Slice sampling

Start

End

Rejection sampler — e�icient at small d , but curse of
dimensionality ultimately strikes.
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Step samplers

Take walk starting from a randomly chosen existing live point. E.g.,
PolyChord (Handley, Hobson, and Lasenby 2015a; Handley,
Hobson, and Lasenby 2015b) — slice sampling walk.

Ellipsoid sampling

Region sampling

Dead

New

Reject

Random walk

Step sampling

Start

End

Slice sampling

Start

End

E�icient and good scaling, ε ∝ 1/d .



Results
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Does it work?

That’s all for theory. We need some numerical investigation.

Does it work as I say it does?

Do we benefit from the log2 1/p scaling? or does the ε e�iciency
factor spoil things?

Here are our results, you should try it too!
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A simple problem

The p-value associated with d independent Gaussian
measurements

• d dimensional sampling space, xi ∼ N (µ, σ2).

• Test-statistic

λ =
d

∑
i=1

(
xi − µ

σ

)2

• We know analytically

λ ∼ χ2
d such that p = 1− Fχ2

d
(λObserved)

• Toy example that allows us to easily control dimension, size of
p and check correctness
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Number of evaluations for fixed fractional uncertainty
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Performance on simple problem

• For large p, nested sampling could only narrowly beat MC in
the best-case scenario, and typically worse. MC just fine
when p is moderate

• For small p . 4σ, the scaling kicks in. Nested sampling wins
by orders of magnitude

• Nested sampling performance depends on dimensionality but
even for 30d sampling space, winning by 106 at 7σ
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Higgs-like example

That was a warm-up. How about a resonance search?

• Simplified version of the original Higgs discovery by
ATLAS (Aad et al. 2012) in the diphoton channel

• H0 — Standard Model (SM) background-only hypothesis, with
a known shape and an unknown total number of background
events

• H1 — SM + a Higgs boson with a Gaussian signal, with a
known width but an unknown mass and an unknown positive
signal strength
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Higgs-like example

• 30 dimensional sampling space, x — the Poisson-distributed
counts in the 30 bins

• Log-likelihood ratio test-statistic with unknown parameters
profiled

λ(x) = 2 log
(
max P(x |mh, µ, b)
max P(x | µ = 0, b)

)
• Likelihood just a product of 30 Poissons.
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Result on Higgs-like example

1σ
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Compute p for increasing test-statistic, λ
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Result on Higgs-like example

• Results consistent between MC, NS and Gross-Vitells
predicted slope to 6σ and beyond

• To reach 6.5σ with uncertainty ∆ log10 p ≈ 0.2, PolyChord
needed 3× 106 calls and MultiNest needed 4× 107

• To reach a similar uncertainty, MC would require
1011 MC simulations.

• Nested sampling winning by about 105 for PolyChord



Summary



Summary

• Similar problem of compression in p-value and Bayesian
evidence computation

• General solution is path sampling

• Nested sampling particularly suitable for p-value
computation, as it naturally builds path to the p-value

• Orders of magnitude faster than Monte Carlo for small p, as
scaling log2 1/p rather than 1/p for fixed relative error

• Performance understood theoretically and demonstrated
numerically
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Translation — NS frequentist ⇔ NS Bayesian

• Sampling space⇔ Parameter space

• Sampling distribution⇔ Prior distribution

• Test-statistic⇔ Likelihood function

• Region corresponding to p-value⇔ Posterior distribution⇔
Target

• Survival function⇔ Volume variable

• Expected p-value under sampling distribution⇔ Evidence
(expected likelihood under prior distribution)



Summary

Ripped an exponential factor out of the problem.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Test statistic λ

PD
F(
λ

)

Evaluate λ for n sets of
randomly generated pseudo-data

Monte Carlo
random samples

Tail area ≈
fraction of samples
above critical value

Monte Carlo

Critical λ

Test statistic λ

At each iteration:
• threshold λ? increases
• draw from λ>λ?
• area compresses by ∼ e−1/nlive

Tail area ≈ yellow area
when threshold reaches

critical λ

Nested sampling

Thresholds λ? Critical λ



P-values

P-values appear in two statistical frameworks (Hubbard and
Bayarri 2003):

• Fisher 1925: p is continuous measures of evidence against H0

• Neyman and Pearson 1933: p < α allows us to control the
type-1 error rate at α

Type-1 error rate
Rate at which would be reject the null, H0, when it was true.



5σ and beyond

In some cases, we may desire even more than 5σ. Table from Lyons
2013

In high-energy physics, we need to compute tiny p-values.



Familiar example

x

In
ve

rse
tem

pe
ra

tu
re,
β

pdf

Anneal on path between prior at β= 0 and posterior at β= 1

Example — annealing, P(x) ∝∝∝L(x)βπ(x)

Thermodynamic integration, Annealed Importance Sampling,
Sequential Monte Carlo and Nested Sampling can be thought of as
path samplers.



Multi-modal
The test-statistic could contain several distinct modes —
problematic?



Sample from whole sample space — Monte Carlo

Looks wonderful. Very (computationally) expensive.



Sample from the target

There are techniques — e.g., inverse-harmonic mean, where
evidence wri�en as posterior mean,

1
Z =

〈
1
L

〉
' 1

n ∑
1
L(xi)

for xi ∼ Posterior. Compute this using draws from the posterior
using MCMC�

No thank you. Terrible properties because of above reasoning.
Radford Neal calls it the Worst MC Method Ever.
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