
Origins of parameters in
adimensional models

AndRew Fowlie

Xi’an Jiaotong LiveRpool UniveRsity

24 05 2023



OveRview

1 Adimensional models

2 Invariant measures

3 QCD

4 Coleman-Weinberg Model

5 Total Asymptotic Freedom

1 57



Adimensional models



HieRaRchy pRoblem

In a nutshell

We observe m2
H ≪ M2

UV

Weak scale radiatively unstable — unprotected by symmetries

Expect theoretically ∆m2
H ∼ M2

UV

Fine-tuning between m2
H and ∆m2

H — ugly, unnatural and
moreover implausible
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HieRaRchy solutions

In a nutshell

Protect it by symmetries — supersymmetry

Lower the UV scales — large extra dimensions, bring the Planck
scale to the weak scale!

No fundamental scalars — technicolor

Relaxation — strange dynamics that trap weak scale, perhaps
near QCD scale — relaxion

New physics near the TeV scale
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LHC lessons

In a nutshell

Hang on. Have you seen the LHC results?

No supersymmetry. No large extra dimensions. No signatures
of naturalness near the TeV scale

Maybe there are no UV scales [1–5]

Maybe the top really is the top
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TRaditional pictuRe
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massive scales and
new physics.
Hierarchy problems.
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Adimensional pictuRe
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top. No classical
scales. Everything
generated
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Adimensional models

No classical scales at all — classically scale invariant

All scales generated anomalously through dimensional
transmutation

This could be by the Coleman-Weinberg mechanism or by
confinement

No quadratic corrections to the weak scale

∆m2
H = 0

on dimensional grounds — nothing to put on the right-hand
side [6]
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Can that Really woRK?
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Can that Really woRK?

What about gravity?

Maybe gravity fits inside this idea

Quadratic gravity [7, 8] is adimensional and renormalizable

Adimensional model could address gravity, hierarchy problem,
and other shortcomings of the Standard Model, including
inflation [9]

Suffers from Ostrodradsky instability or ghosts, though may be
viable [10–14]

No easy path to quantum gravity; must consider paths with
obstacles
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ORigins of fundamental paRameteRs

Deep question — what is the origin of our fundamental
parameters?

Adimensional models posit no new dimensional physics

Does it close door for explanations of fundamental parameters?
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PRofound consequences

Figure: Explored in popular science but rarely in hep-ph
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Random?



ARe they Random?

Perhaps they’re randomly chosen

From what distribution?

If there are no fundamental scales, that distribution had better
not depend on any scale

We want to construct distributions for an adimensional theory’s
dimensionless parameters that don’t refer to any particular
dimensional scales
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ARe they Random?

If there are fundamental scales, it could be scale dependent

In grand unified theories (GUTs), for example, we might assume
there is a unification scale, MX

We could write distributions for a unified coupling at that scale,
Q ≈ MX

They would look different at other scales, but that’s alright as
MX is special
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Invariant measures



Changing vaRiables

The densities for a parameter y = f(x) and x are connected by

pY(y) = pX(x) |J |

where |J | is the Jacobian for the transformation between x and
y

In this simple one-dimensional case,

|J | =
∣∣∣∣dxdy

∣∣∣∣
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InvaRiant measuRes

The distribution would be invariant under this transformation if
pX and pY were the same function,

p ≡ pY = pX

Formally, p(x)dx would be an invariant measure (see e.g.,
ref. [15–18])
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MeasuRe theoRetic

Measure — assigns non-negative value to subsets of a space

Must satisify

µ(ϕ) = 0 and µ(∪iAi) = ∑
i

µ(Ai)

for disjoint sets Ai

Further conditions for a probability measure, e.g., probability on
A satisfies µ(A) = 1 and A is a σ-algebra
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Topological gRoup

The parameter transformations may form a topological group

Requires that transformations are continuous, associative and
closed, and the existence of an inverse and an identity

The topological space may be locally compact — no holes or
spikes — in which case the group is said to be locally compact

The real numbers — topological group under addition and
locally compact as no holes

The group parameters may be defined on a closed interval, in
which case the group is said to be compact

Lorentz group — defined on [0, c) — not compact

17 57



HaaR measuRe

A (right) invariant measure satisfies

µ(S) = µ(Sg)

for every subset S and every group element g

This invariant measure is the (right) Haar measure of the group

Haar measure natural notion of volume
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Existence of HaaR measuRe

Haar measure exists for any locally compact group

Though proper — µ(G) < ∞ — if and only if group is compact
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Shifting

Consider the reals and the transformation x → x+ A

The invariant measure is the Lebesgue measure

µ([x, y]) = x− y

The invariant distribution p(x)dx ∝ µ(dx) is simply

p(x) ∝ const.
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Scaling

Consider the reals and the transformation x → Ax

The invariant measure is more involved

µ([x, y]) = log y− log x

The invariant distribution is

p(x) ∝
1
x

or equivalently,
p(log x) ∝ const.
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ImpRopRietRy

The scale and shift invariant distributions are examples of
improper distributions

They weren’t compact spaces

They cannot be normalised to one because∫
p(x)dx = ∞

We cannot sample from them

Not useless, however, as improper prior + likelihood may lead to
a proper posterior ∫

p(K | x)p(x)dx < ∞
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InvaRiants

The number of distributions that can be found by a group
invariance is equal to the size of the invariance group, n

We can re-parameterise our d dimensional space as n
parameters and d− n group invariants

For example, rotations in d dimensions — an invariant radius
and d− 1 angles

The measures for the invariants are arbitrary as they do not
transform under the group

|J | = 1 for the invariants
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Examples

Suppose that we considered dependent re-scalings for two
parameters, x → Ax and y → Ay

Invariance cannot uniquely dictate the form of the
two-dimensional prior, as it could be

p(x, y) ∝
f(x/y)

xy

x/y is a group invariant

The function f isn’t restricted, though it must satisfy∫
f(z)dz = 1
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Examples

Similarly, if we were to consider dependent shifts, x → x+ A
and y → y+ A, we would obtain

p(x, y) ∝ f(x− y)

x− y is a group invariant

The function f isn’t restricted, though it must satisfy∫
f(z)dz = 1

25 57



RG invaRiant distRibutions

We want to construct distributions for an adimensional theory’s
parameters that don’t refer to any particular dimensional scale

We must consider the RG evolution of the parameters and build
the RG invariant measures and distributions

If we succeed, fundamental parameters could be draws from
these distributions

If we fail, the parameters must originate in some other way
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QCD



QCD β-function

The β-function in QCD

dαs

d lnQ
= −β0α2

s where β0 > 0

Solving this differential equation yields

αs(Q) =
αs(Q′)

1− αs(Q′) β0 ln (Q′/Q)

This may be re-written as

αs(Q) =
1

β0 ln (Q/ΛQCD)

This used the RG-invariant QCD scale

ΛQCD = Qe−
1

β0αs(Q)
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QCD RG flow

The coupling flows to αS = 0 — asymptotic freedom

This is a UV attractor

Landau-pole — finite-time blow up — in the IR at the QCD scale

RG evolution through Landau pole impossible
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QCD RG flow
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QCD RG flow

We cannot evolve through Landau pole

The RG transformations aren’t closed — as evolving to
Q < ΛQCD undefined

This means that an invariant measure cannot exist

For illustrative purposes, suppose

αs(Q) =
1

β0 ln (Q/ΛQCD)

valid for any Q

The Jacobian for flowing from Q → Q′

|J | =
∣∣∣∣dαs(Q′)

dαs(Q)

∣∣∣∣ = ∣∣∣∣αs(Q′)

αs(Q)

∣∣∣∣2
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InvaRiant measuRe

The Jacobian rule leads to

p(αs(Q)) = p′(αs(Q′)) |J |

Requiring that p = p′ gives an invariant distribution

p(αs) ∝
1
α2
s

Wonderful! but improper! ∫
0

dα

α2 = ∞
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Why is it impRopeR, physically?
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Why is it impRopeR, physically?

The invariant measure for the QCD coupling leads to

p(log ΛQCD) = const.

This is a scale invariant distribution — invariant under

ΛQCD → AΛQCD

Intuitive — how could there be any preferred QCD scale in the
theory?

Improper — having no preferred scale means that it is improper
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Why is it impRopeR, gRoup theoRetically?

The group wasn’t compact; specifically, as we omitted α = 0

α = 0 trivial; stays zero forever

If included, the invariant measure is a Dirac mass at zero, δ(α)
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Does it matteR?

In our physics education, we have a series of shocks when we
discover seeming important quantities can be set arbitrarily, e.g.,

c = -h = G = 1

We can use ΛQCD to define a system of units

ΛQCD = 1

Measure any other scales relative to QCD scale
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Coleman-Weinberg Model



Coleman-WeinbeRg model

Scalar with a U(1) gauge symmetry

L =
∣∣Dµϕ

∣∣2 − λ

4!
|ϕ|4 − 1

4
FµνFµν.

Tree-level scalar mass was set to zero, such that the model is
adimensional
Masses are generated by radiative symmetry breaking
The symmetry breaking scale, v, defined as the solution for

λ(Q = v) =
33
8π2 e

4(Q = v)

The ratio of the scalar and vector mass predicted

m2
ϕ

m2
V
=

2
3π

α(v)
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Coleman-WeinbeRg model

RG equations at one-loop are [19–21]

dλ

d lnQ
=

10
3(4π)2

λ2 − 12
(4π)

αλ + 36α2

dα

d lnQ
= −β0α2

For the gauge coupling, this time β0 < 0 though otherwise
identical as before
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RG flow in CW model

There are exact solutions

α(Q) =
α(Q′)

1− α(Q′) β0 ln (Q′/Q)

λ(Q) = γα(Q) tan
[√

719 ln α(Q) + Θ
]
+ δα(Q)

where the coefficients are

γ =

√
719
10

4π and δ =
19
10

4π

The quantity Θ may be chosen to fix λ(Q′) through

Θ = arctan

[
λ(Q′)− δα(Q′)

γα(Q′)

]
−
√

719 ln α(Q′)

This parameter is in fact an RG invariant
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RG flow in CW model
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Figure: The tangent swings rapidly between Landau poles
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InvaRiant measuRe in CW model

As before, make RG transformations closed by treating the RG
solutions as valid at any Q
Compute the Jacobian of the transformations

|J | = α′

α

α′2 + (λ′ − δα′)2

α2 + (λ − δα)2

Thus the distributions are related by

p(λ(Q), α(Q)) = p′(λ(Q′), α(Q′)) |J |

We construct an RG invariant distributions by requiring that p
and p′ are the same function,

p(λ, α) ∝
f(Θ)

α
[
γα2 + (λ − δα)2

]
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InvaRiant measuRe in CW model

We may marginalise λ, finding,

p(λ | α) =
f(Θ)

γαπ

[
1+

(
λ−δα

γα

)2
] ,

p(α) ∝
1
α2 ,

The same improper measure for α

The conditional measure for λ is proper, and resembles a
Cauchy distribution located at δα with scale parameter γα

The factor f(Θ) arbitrary though must satisfy∫
f(Θ)dΘ = 1
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Cauchy distRibution
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UnsatisfactoRy

Landau poles mean that RG evolution isn’t closed

To construct the invariant measure, we assumed RG evolution
‘through’ Landau poles

Hmm.

Even accepting that, the results are practically useless

Knowing the parameters α and λ at a scale Q isn’t enough

We need to know ‘domain’ where theory valid — valid between
which two Landau poles?
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Total Asymptotic Freedom



Total Asymptotic FReedom

QCD was trivial — ΛQCD = 1

Scalar QED suffered from Landau poles in the IR and UV

Consider theory with no Landau poles in UV — easiest theories
are totally asymptotically free theories [22]

Make a simple model — a scalar with a non-Abelian gauge
interaction

Leave it general — don’t specify group or particle content
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Total Asymptotic FReedom

Form of RG equation for the gauge coupling identical to that in
QCD — no Landau pole in UV

Agnostic about form of quartic RG equation;

dλ

d lnQ
= sλλ2 − sλgλg2 + sgg4

In known QFT, coefficients s > 0
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RG flow in simple TAF model

Convenient to define

C ≡
sg
β0

D ≡
sλg − β0

2sg

E ≡ D2 − sλ

sg

For E = 0, trivial fixed-flow

For E < 0, Coleman-Weinberg type behaviour — tangent that
swings rapidly between Landau poles

For E > 0, may avoid Landau poles
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RG flow in simple TAF model
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RG flow in simple TAF model

The attractors are at

RIR =
1

D−
√

E
and RUV =

1

D+
√

E
.

If at any scale the ratio lies inside [RUV,RIR], it stays trapped
inside that interval

R(Q) ≡ λ(Q)
4πα(Q)

= RIR + (RUV − RIR)
1
2

[
1− tanh

(
C
√

E ln α(Q) + Θ
)]

R = RUV and R = RIR are special fixed flows

Otherwise, it flows to a Landau pole in the IR or UV
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RG flow in simple TAF model

Inside the solution

R(Q) = RIR + (RUV − RIR)
1
2

[
1− tanh

(
C
√

E ln α(Q) + Θ
)]

the red factor goes from 0 in the IR to 1 in the UV

Θ is an RG invariant,

Θ = arctanh
[
1− 2

(
R(Q)− RIR

RUV − RIR

)]
− C

√
E log α(Q)

It controls R(Q′)
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RG flow in simple TAF model

Computing the Jacobian, we find an RG invariant measure on
(RUV,RIR),

p(R | α) ∝
f(Θ)

(RIR − R) (R− RUV)

p(α) ∝
1
α2

Conditional distribution p(R | α) has poles at attractors

Proper so long as f(Θ) is proper

Same form at every scale; though shape of distributions flows
as α flows
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Role of f(Θ)

Θ ≡ Θ(R, α) — invariant though function of R and α

The function f(Θ) must satisfy∫
f(Θ)dΘ = 1

and thus must satisfy

lim
|Θ|→∞

f(Θ) = 0

Consider behaviour of

R(Q) = RIR + (RUV − RIR)
1
2

[
1− tanh

(
C
√

E ln α(Q) + Θ
)]

In the IR where ln α → ∞, R → RUV requires Θ → −∞
In the UV where ln α → −∞, R → RIR requires Θ → ∞
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Role of f(Θ)

Controls flow

Thus the function f(Θ) must disfavour RUV in the IR and RIR in
the UV

Controls flow of probability from RIR in the IR to RUV in the UV

Now, as an example, consider a standard normal, f(Θ) = N (0, 1)
with RIR = 2 and RUV = 1
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MeasuRe flows between IR and UV attRactoR
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DiRac masses at attRactoRs

We considered (RIR,RUV), i.e., omitting the endpoints

Dirac mass at the attractors would also be invariant

p(R) = δ(R− RIR/UV)

They could be combined with our invariant distribution
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What theoRies pRedict E > 0?

Discussed in ref. [22]

Certainly possible, though requires big representations and big
groups

Easier if add Yukawa interactions, though RG equations become
harder to solve
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Complications



Would this woRK in Realistic models?

In principle, more realistic models are no different

If RG flows forms locally compact group, invariant distribution
should exist

Though only proper if flow forms compact group

In practice, much harder as we cannot compute the RG
invariants or solve the RG equations analytically

Maybe there are short-cuts?

For example, Ulam’s method or the ergodic hypothesis that
time-averages equal space-averages
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Conclusions

Adimensional models could solve the hierarchy problem

Possibly leads to renormalizable quadratic gravity, though
suffers from ghosts

Predict no fundamental scales at all

If parameters originate as random draws, distributions must be
scale invariant

Explored scale invariant distributions in simple models

This involves finding the invariant Haar measure of RG
transformations

Landau poles caused difficulties

Successful in totally asymptotically free model
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