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Recap chi-squared method

● Model with parameters
● Experimental data, 
● Build a chi-squared function:

● Minimise that function with respect to the 
model parameters.



Recap chi-squared method

● Find, amongst other things:
● A best-fit point, confidence intervals for 

the parameters.
● Confidence intervals, e.g.



Confidence interval

● What does it mean? If experiment and 
analysis repeated many times, 68% of the 
time, that interval contains the “true” 
parameter.

● This is “frequentist” statistics.
● Probability related to frequency with which 

data is obtained.



Frequentist

● Chi-squared is related to a probability - the 
“likelihood”:

● Probability of data, given model point.
● Minimizing chi-squared is equivalent to 

maximising likelihood, because the 
exponential is monotonic.



Bayesian!

● Is that what we really want? Don’t we want 
probability of model point given data, 

● They are not the same! E.g. 

● We see that frequentist stats is constructed 
“in the data”.

● Let’s try to construct “in the model”.



Bayesian statistics

● We need Bayesian statistics.
● Probability no longer related to frequencies.
● Probability is a numerical measure of our belief in a 

proposition.
● Bayesian statistics is a “calculus of beliefs”.
● Won’t tell you what they ought to be.
● Will tell you how to update your beliefs in light of data 

in a logical, consistent way.



Bayes Theorem
● Find what we really want with Bayes 

theorem:

● Now we have probability of model point, 
given data.

● But we’ve had to introduce two new 
quantities. What are they?



Evidence

● The evidence quantifies “naturalness”. 
● I will return to it.
● At the moment, see it as a normalisation 

constant.



Prior

● Prior is source of much controversy & 
misunderstanding.

● Prior belief, before seeing the data!
● If the data is “strong” enough, different 

(but fair, honest) investigators should make 
identical conclusions, regardless of their 
choices of priors. 



What should we choose?

● If you don’t know anything, pick a uniform 
prior?

● But a uniform prior weights successive 
decades 10 times more.

● Probability “piles” up at large values.
● Pick a scale invariant prior! Log prior.
● If you do already believe you know the 

scale, uniform prior.



There ARE wrong choices of prior

● There is no “right” choice of prior.
● But there are wrong/dishonest choices. E.g. 

a delta-function for a parameter that you 
know nothing about.

● Repeat: Bayesian statistics is a calculus of 
beliefs. It cannot tell you what your prior 
beliefs should be.



What is the posterior?

● Main object of interest.
● Probability density of model’s parameter 

space, given the data and the model.
● Probability density function. If you change 

variables, you need a Jacobian.
● Problem: what if we want to know about 

one or two parameter? not the whole 
parameter space?



Marginalisation
● Because it is a pdf, we integrate (“marginalise”) 

parameters we are not interested in, e.g.,

● “Volume effect” : parameters that satisfy data without 
fine-tuning are favoured. 

● NB volume effect is occasionally (wrongly) considered 
a fault in the HEP literature.



Credible regions

● Want to present “best” regions of 
parameter space.

● Regions that contain given fractions, e.g. 
68% or 95% of posterior probability.

● There are infinitely many ways of defining 
such regions!

● Must pick an  “ordering rule”



1D credible region

● Tempting to pick the smallest/most dense 
region that contains the fraction.

● But “smallest” is not parameterisation 
invariant.

● Pick a symmetric ordering rule:



2D credible region

● No way to extend “symmetric” rule to 2D.
● This time do pick the smallest/most dense 

region possible.



2D credible region

● Found numerically, pseudo-code e.g.:
● Sum regions of low density until 1-0.68 of 

pdf is found
crit_density = 0

while area < 1-0.68:

crit_density += 0.001

area = sum(pdf, where density < crit_density)



2D credible region

● Disadvantage rarely (never!) mentioned in 
HEP literature.

● The 2D credible regions are not invariant 
under parameter transformations.

● E.g. make credible region on (x,y) plane.
● There will not be a nice (many-to-one) 

correspondence with credible region on (x2, 
y2) plane!



Bayesian posterior mean

● In chi-squared methods, identify “best-fit” 
point, that minimizes chi-squared.

● With posterior pdf, we could find the mode, 
the point that maximises pdf.

● But that is not parameterisation invariant, 
e.g.  

● Instead use posterior mean:



Posterior mean

● It is the expectation for parameter.
● Disadvantage: 
● Suppose distribution has many modes, 

posterior mean might lie between modes! 
● Might be a very bad point, e.g. unphysical 

point with tachyons or incorrect EWSB etc.



Recap, pros & cons vs chi-squared

● Calculate proposition of interest.
● Include prior beliefs, in a formal way.
● Penalise fine-tuning, in a formal way.
● Constructed “in the model” i.e. we think 

about only the data we have, not pseudo-
data from imaginary experiments!



Cons

● Less understood in HEP community.
● Suspicion about “subjective” nature of 

priors.
● Problems with parameterisation 

independence.



Part II: 
Naturalness
EW fine-tuning etc



Naturalness in SUSY

● For ~30 years, theorists have worried about 
naturalness in SUSY.

● Especially after LEP-II.
● And even more so after LHC 7 & 8 TeV.
● What are they worried about?



EWFT

● Z-boson mass from EWSB is a function of 
SUSY breaking and preserving, 
superpotential parameters.

● Unless they are of ~MZ, we need 
cancellations between large numbers.

● I.e. we need fine-tuning.



EWFT

● EWFT quantified by Barbieri & Giudice:

● Sensible measure for tuning.
● But it makes no connection with 

probabilities.
● Since BG, others have made their own 

measures.



Bayes and fine-tuning

● The fine-tuning measure in Bayesian 
statistics is the evidence! 

● Clear in Trotta, Ruiz et al Balazs et al, and 
others.



Evidence

● Evidence is probability of data given model.
● Similar to likelihood. It updates prior 

beliefs about model:

● If small, model is fine-tuned - agrees with 
data only in small part of its parameter 
space.



Evidence

● Best to consider a ratio of evidences 
(“Bayes factor”)

● A ratio of evidences tells you how you how 
to update your prior beliefs about 2 models.

● If Bayes >>1, and you have P(A)/P(B)~1, in 
light of data, you should now strongly 
prefer model A.



Evidence applied to EWFT

● In EWFT, the data is the measurement of 
MZ. The precision is such that the likelihood 
is ~a Dirac function.

● Our SUSY model has parameter μ, in the 
superpotential, and b, soft-breaking 
bilinear.

● We ought to formulate our priors in μ and 
b.



Evidence applied to EWFT

● But numerically, tricky to work with μ and 
b. Switch to MZ and tan β via EWSB 
conditions.

● There is an associated Jacobian:

● Proportional to BG measure. 



EWFT

● We see that the BG fine-tuning measure is 
similar to the penalty from Bayesian 
statistics.

● The penalty drops-out from principles of 
Bayesian statistics; it is not arbitrary, 
unlike BG measure.



However

● The BayesFIT analyses in the past 
parameterised in MZ (not μ) but included no 
Jacobian.

● Equivalent to having a prior for μ that is 
always just the μ that gives the right MZ!

● i.e. not a “fair” prior.



Related note: the μ-problem

● Look again at our prior for MZ, with a 
change of variables 

● EWFT problem is (amongst other things) 
that that the factor in brackets [] is very 
big for MZ equal to its measured value. 

● i.e. μ >> MZ,



μ-problem

● The μ-problem is that a priori μ is unrelated to the EW 
and SUSY breaking scales.

● What should our prior be? Perhaps logarithmic? 
● The evidence for such a model will be diluted! Only 

very particular values of μ acceptable.
● Solution NMSSM? μ generated dynamically, “naturally” 

of order SUSY breaking scale.
EWFTμ-problem



Final note: don’t have full picture...

● Can we judge naturalness if we don’t understand the 
whole model? Motivates e.g. split-SUSY,

● “...in the landscape picture, the measure is 
dominated by the requirement of getting a small 
enough CC … can dwarf the tuning required to keep 
the Higgs light.”  Arkani-Hamed & Dimopoulos

● Maybe a model with EWFT has less fine-tuning 
elsewhere


