Bayesian reconstruction of SUSY parameters at $\sqrt{s} = 14 \, \text{TeV}$ via the Golden decay

Andrew Fowlie, Malgorzata Kazana, Leszek Roszkowski

University of Sheffield a.fowlie@sheffield.ac.uk

TMEX 2013

A. Fowlie, Sheffield University

TMEX 2013

1/3

- 1 No SUSY so far...
- 2 Finding heavier SUSY
- 3 Method
- 4 Results: golden decay only
- 5 Golden decay + Higgs
- **6** Golden decay + Higgs + Ωh^2

INTERESTED IN CMSSM

SUSY motivations you have heard before. Amongst other things:

- 1 Solves hierarchy problem by cancelling divergent loops
- 2 Dark matter is lightest supersymmetric particle (*R*-parity), usually χ_1
- 3 Unification of couplings if SUSY particles included in running $\lesssim 10\,\text{TeV}$ at $\sim 10^{16}\,\text{GeV}$

INTERESTED IN CMSSM

- CMSSM = C onstrained M inimal S upersymmetric S tandard M odel
- Unification of MSSM soft masses at GUT scale:

1 $m_{1/2} = M_1 = M_2 = M_3 =$ Common gaugino mass

- 2 $m_0 = \text{Common scalar mass}$
- $3 A_0 = \text{Common trilinear}$

4 tan
$$\beta$$
 = Ratio of Higgs vevs

5 sgn μ

- Run parameters to low scale with renormalisation group equations
- Calculate mass spectrum

INTERESTED IN CMSSM

Approximate mass relations:

$$\begin{array}{l} m_{\tilde{\chi}_1} \approx 0.4m_{1/2} \\ m_{\tilde{\chi}_2} \approx 0.8m_{1/2} \\ m_{\tilde{g}} \approx 2.7m_{1/2} \\ m_{\tilde{\tau}_1} \approx \sqrt{0.15m_{1/2}^2 + m_0^2} \end{array}$$

NO SUSY SO FAR...

Expected light SUSY $M_{SUSY} \gtrsim M_{EW}$:

- 1 3σ from $(g-2)_{\mu}$ experimental hint. Light smuons?
- 2 Dark matter annihilation prefers light χ_1
 - Naturalness $\frac{\partial M_z}{\partial M_{SUSY}}$ fine-tuning of EW scale
- Pre-LHC, CMSSM fits showed:
 - $\tilde{\chi}_i^0, \, \tilde{\ell} \lesssim 0.5 \, \text{TeV}$
 - $ilde{q}, \tilde{g} \lesssim 1 \, \text{TeV}.$
- Ωh^2 reduced by stau-annihilation

Nope!

3

These scenarios excluded by direct searches, Higgs, etc

SUSY MUST BE HEAVIER...

arXiv:1206.0264

$M_{\rm SUSY}$ > than expected

- $m_h \approx 125 \, \text{GeV}$ as constraining as multijet searches
- \blacksquare Our fits show \lesssim TeV scale
 - compatible with Higgs, etc
- Do not need >> 1 TeV, split SUSY yet
- Lightest in stau coannihilation. $m_h \approx 125 \, \text{GeV}$ with maximal mixing $M_{\text{SUSY}} \approx \sqrt{6} X_t$
- Big $\sim \pm 3$ GeV on m_h from missing higher orders

7/35

・ 同 ト ・ ヨ ト ・ ヨ

FINDING HEAVIER SUSY (1.)

- Are heavier models visible at LHC $\sqrt{s} = 14$ TeV?
- Yes! Via a golden decay
- Can we measure the masses?
- Yes! Reconstruct sparticle masses from kinematic edges
- \blacksquare Preliminary golden decay studies were for <code>light SUSY</code> , for early LHC with $\sim 10\, \text{fb}^{-1}$
- e.g. ATLAS SU3
- Extend previous work (arXiv:1106.5117, arXiv:0907.0594)
- What might errors on SUSY masses be?
- What about resulting errors on SUSY parameters?

FINDING HEAVIER SUSY (2.)

Famous golden decay: $\tilde{q} \rightarrow j \tilde{\chi}_2^0 \rightarrow q \ell \tilde{\ell} \rightarrow q \ell \ell \tilde{\chi}_1^0$

- Visible products:
 - 1 At least one jet (possible jet from initial \tilde{g} decay)
 - 2 OSSF leptons (but near and far cannot be distinguished) 3 MET from χ_1

Method

Idea: How well might CMSSM parameters be found at 14 TeV?

- 1 Pick a CMSSM point allowed by experiments (e.g. m_h , Ωh^2 , direct searches)
- 2 Monte Carlo for CMSSM point at 14 TeV
- 3 Simulate sparticle mass measurements from golden decay
- 4 Bayesian reconstruction of CMSSM parameters with simulated sparticle mass measurements

FIRST STEP, PICKING CMSSM POINT (1.)

- Golden decay requires hierarchy:
 - $\begin{array}{l} \quad \tilde{q} > \tilde{\chi}_2^0 > \tilde{\ell} \\ \quad \tilde{g} > \tilde{q} \text{ to shut } \tilde{q} \to \tilde{g}q \\ \quad \text{spoiler} \end{array}$
- Actually $\tilde{\chi}_2^0 > \tilde{\ell} + 50 \, {\rm GeV}$ to avoid phase space suppression of BR
- In CMSSM, means $m_{1/2} \gtrsim m_0$
- Look again at allowed regions. Need stau-coannihilation region

Stau-coannihilation allowed in CMSSM with golden decay

Roszkowski et al., arXiv:

FIRST STEP, PICKING CMSSM POINT (2.)

- Local search for good point with golden decay
- Minuit to find the point with $m_{1/2} = 750 \,\text{GeV}$ and:
 - $m_h \approx 125 \, \text{GeV}$, within errors
 - $\Omega h^2 \approx WMAP/PLANCK$
 - Golden decay

12 / 35

FIRST STEP, PICKING CMSSM POINT (3.)

Important masses:

Important observables:

 Ωh² = 0.11 agreement with Planck by stau coannihilation
 B (B_s → μ⁺μ⁻) = 3.2 × 10⁻⁹ agreement with LHCb
 (g-2)_μ = 3.8 × 10⁻¹⁰ poor, but so is SM
 Higgs reasonable agreement within theory error m_b = 123.2 ± 3 GeV

13 / 35

- **Pythia with number of events** $\Leftrightarrow \sim 100 \, \text{fb}^{-1}$ at 14 TeV
- $\blacksquare \sim 100\,\text{fb}^{-1}$ could be collected in ~ 2 years
- Though in reality now likely to be 13 TeV...
- Our benchmark mass spectrum from SoftSUSY
- Resulting in invariant mass distributions for:
 - 1 lepton pair ($\ell\ell$),
 - 2-3 and each lepton with the jet (ℓq and ℓq),
 - 4 the jet and both leptons ($\ell \ell q$),
 - 5 and a threshold $\ell \ell q$, with $\theta > \pi/2$ between leptons in slepton frame

Third step, recover sparticle masses (1.)

- Predict "edges" in distributions from relativistic kinematics
- Functions of four unknown sparticle masses in

golden decay, $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, \tilde{q} , $\tilde{\ell}$

- E.g., endpoint of *ll* invariant mass distribution
- Sawtooth shape because mediated by scalar

Endpoints are functions of sparticle masses (e.g., arXiv:0410303):

$$m_{\ell\ell\ell}^{2} = \frac{\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}}^{2}\right)\left(m_{\tilde{l}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}}^{2}}$$

$$m_{\ell q, \text{ near}}^{2} = \frac{\left(m_{\tilde{q}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}}^{2}\right)}{m_{\tilde{\chi}_{1}^{0}}^{2}}$$

$$m_{\ell q, \text{ far}}^{2} = \frac{\left(m_{\tilde{q}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{l}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}}^{2}}$$

$$m_{\ell q q}^{2} = \max\left[\frac{\left(m_{\tilde{q}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}}, \frac{\left(m_{\tilde{q}}^{2} - m_{\tilde{l}}^{2}\right)\left(m_{\tilde{l}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}}\right]$$

Third step, recover sparticle masses (3.)

- Fit unknown sparticle masses to five endpoints with Root
- Single solution for sparticle masses and statistical errors
- Errors are correlated \Rightarrow covariance matrix
- Basis $(m_{\tilde{\chi}_1^0}, m_{\tilde{\ell}}, m_{\tilde{\chi}_2^0}, m_{\tilde{q}})$ in (Gev)²:

$C_{ m goldendecay} =$	/167	4 995	991	1508\
		595	592	899
			589	894
	(.	•		1364/

Diagonalise matrix to find errors:

$$VC^{-1}V^{T} \approx \text{diag}\left[(0.2 \text{ GeV})^{-2}, (1.6 \text{ GeV})^{-2}, (1.9 \text{ GeV})^{-2}, (64.9 \text{ GeV})^{-2}\right]$$

Best-determined direction $\sim rac{1}{\sqrt{2}}(m_{\tilde{\ell}}-m_{\tilde{\chi}^0_2})$ with $\sigma=0.2\,{
m GeV}$

(日)

■ Four eigenvectors of covariance matrix:

$$\begin{array}{l} \blacksquare \quad 0.2 \, \text{GeV} \Leftrightarrow \quad 0.0 \cdot m_{\tilde{\chi}_1^0} + 0.7 \cdot m_{\tilde{\ell}} - 0.7 \cdot m_{\tilde{\chi}_2^0} + 0.0 \cdot m_{\tilde{q}} \approx \\ \frac{1}{\sqrt{2}} (m_{\tilde{\ell}} - m_{\tilde{\chi}_2^0}) \end{array}$$

$$2 \ 1.6 \,\text{GeV} \Leftrightarrow \ 0.2 \cdot m_{\tilde{\chi}_1^0} - 0.4 \cdot m_{\tilde{\ell}} - 0.5 \cdot m_{\tilde{\chi}_2^0} + 0.8 \cdot m_{\tilde{q}}$$

$$3 \quad 1.9 \,\text{GeV} \Leftrightarrow -0.8 \cdot m_{\tilde{\chi}^0_1} + 0.4 \cdot m_{\tilde{\ell}} + 0.4 \cdot m_{\tilde{\chi}^0_2} + 0.3 \cdot m_{\tilde{q}}$$

4 64.9 GeV
$$\Leftrightarrow$$
 0.6 \cdot $m_{\tilde{\chi}_1^0}$ - 0.4 \cdot $m_{\tilde{\ell}}$ - 0.4 \cdot $m_{\tilde{\chi}_2^0}$ - 0.6 \cdot $m_{\tilde{q}}$

■ Three well determined directions $\sigma \leq 2 \, \text{GeV}$

But one poor
$$\sigma \approx 65 \,\text{GeV}$$

FINAL STEP, RECONSTRUCT CMSSM PARAMETERS (1.)

- Try to recover original CMSSM parameters from simulated sparticle mass measurements
- Use Bayesian statistics . Bayes theorem:

$$\underbrace{p\left(m_{0},m_{1/2},\tan\beta,A_{0}|\mathbf{D}\right)}_{\text{Posterior density}} \propto \underbrace{\mathcal{L}\left(\mathbf{D}|m_{0},m_{1/2},\ldots\right)}_{\text{Likelihood}} \times \underbrace{\pi\left(m_{0},m_{1/2},\ldots\right)}_{\text{Prior}}$$

- We want to find posterior density for CMSSM, given golden decay measurements
- Marginalise posterior, to remove parameter dependencies, e.g., $p(m_0, m_{1/2} | \mathbf{D}) = \int p(m_0, m_{1/2}, \tan \beta, A_0 | \mathbf{D}) \, dA_0 \, d \tan \beta$
- Find "credible regions:" Smallest region A such that $\int_A p(m_0, m_{1/2} | \mathbf{D}) dm_0 dm_{1/2} = 95\%$

FINAL STEP, RECONSTRUCT CMSSM PARAMETERS (2.)

- Priors reflect "prior belief" in parameter space
- Choose flat priors, expect prior independence
- Likelihood \mathcal{L} is a multivariate Gaussian from our golden decay simulations ,

$$\mathcal{L}_{ ext{golden decay}} = \exp\left[-rac{1}{2}(M-M_{ ext{benchmark}})C^{-1}(M-M_{ ext{benchmark}})^T
ight]$$

- $M = (m_{\tilde{\chi}_1^0}, m_{\tilde{\ell}}, m_{\tilde{\chi}_2^0}, m_{\tilde{q}})$ is function of $m_0, m_{1/2}, ...$ and C is covariance matrix from our MC
- Also apply Gaussian likelihoods for $\Omega h^2 = 0.1186 \pm 0.0031 \pm 10\%$ and $m_h = 125.8 \pm 0.5 \pm 3 \,\text{GeV}$
- Supply priors and likelihoods to MultiNest. Returns posterior after a few days

- Assume SUSY CMSSM benchmark point is "true"
- 2 Assume sparticle masses measured by golden decay at LHC $\sqrt{s} = 14 \,\text{TeV}$
- 3 Find expected errors (covariance matrix) from MC
- 4 Assume flat priors for CMSSM parameters m_0 , $m_{1/2}$, A_0 , tan β
- 5 Fit CMSSM to golden decay measurements with Bayesian statistics
- 6 How well do we recover the original benchmark parameters?
- 7 Afterwards, add information from m_h and Ωh^2 to see how much it improves recovery

Results, golden decay only $-(m_0, m_{1/2})$

$(m_0,m_{1/2})$ for $\mathcal{L}_{golden decay}$

- Image: state of the state of
- Single correct solution found
- With this information alone, successfully recover "true"

benchmark point

- Major axis measured combination of sparticle masses
- Bias for smaller m₀ and larger m_{1/2}

Results, Golden decay only — $(A_0, \tan \beta)$

- ■/■ = 68%/95% region
 - $\bullet / \bullet = Benchmark/estimate$
 - Single correct solution found
- A_0 reconstruction much poorer, ~ 0.5 TeV at 95%
- tan β determined to within

a few units

- Slight positive correlation, not much though
- Bias for smaller tan β: posterior mean (best estimate) lies someway below benchmark

(A_0 ,tan β) for $\mathcal{L}_{golden decay}$

■ /■ = 68%/95% region ◆ /● = Benchmark/estimate Now add Higgs mass so that *L* = *L*_{g.d.} × *L*_{Higgs}

How much will extra info help reconstruction?

- Increases $\tan \beta$ to saturate tree-level $m_h = M_Z \cos 2\beta$
- A₀ small improvement
- Still bias for smaller $\tan \beta$

(A_0,tan β) for $\mathcal{L} = \mathcal{L}_{\text{g.d.}} \times \mathcal{L}_{\text{Higgs}}$

- Increase in tan β makes $\tilde{\tau} < \tilde{\chi}_1^0$
- Rules out left-hand-side (we want χ LSP)
- Otherwise little improvement in m_0 or $m_{1/2}$
- Higgs mass increases logarithmically with stop masses
- Insensitive to small changes in m_0 and $m_{1/2}$

 m_h cannot help once golden decay applied

(m_0 , $m_{1/2}$) for $\mathcal{L} = \mathcal{L}_{g.d.} imes \mathcal{L}_{Higgs}$

25 / 35

Results, all information, adding $\Omega h^2 - (m_0, m_{1/2})$

- Add Planck measurement of Ωh²
- $\blacksquare \ \mathcal{L} = \mathcal{L}_{g.d.} \times \mathcal{L}_{Higgs} \times \mathcal{L}_{\Omega h^2}$
- Despite all this information, picture not much improved
 - Ωh² and golden decay constrain same direction of parameter space
- Major axis \approx no improvement
- Minor axis squeezed by $\tilde{\tau} \approx \tilde{\chi}_1^0$ for stau-coannihilation
- Already determined by golden decay

$$(m_0, m_{1/2})$$
 for $\mathcal{L} = \mathcal{L}_{ ext{g.d.}} imes \mathcal{L}_{ ext{Higgs}} imes \mathcal{L}_{\Omega h^2}$

26 / 35

Results, all information, adding $\Omega h^2 - (A_0, \tan \beta)^2$

Big improvement in
$$\tan \beta$$
, now determined to within \sim unit

- tan β tuned for $\tilde{\tau} \approx \tilde{\chi}_1^0$ stau-coannihilation
- Bias has disappeared
- Additional m_h and Ωh^2 information cannot help with A_0
- Determined still to within $\sim 0.5 \, \text{TeV}$

(
$$A_0$$
,tan β) for

$$\mathcal{L} = \mathcal{L}_{ ext{golden decay}} imes \mathcal{L}_{ ext{Higgs}} imes \mathcal{L}_{\Omega h^2}$$

NFORMATION ON DIRECT DETECTION

$(m_{\gamma}, \sigma_{p}^{Sl})$ for $\mathcal{L} = \mathcal{L}_{golden decay}$

CONCLUSIONS

- Simulated golden decay at high mass CMSSM benchmark point
- Found that sparticle masses can be measured with good precision
- Reconstructed CMSSM parameters with Bayesian statistics
- **Found that** CMSSM parameters can be well-recovered
- Except A_0 , which is tricky
- Improves somewhat when additional information from Ωh^2 is added, but less so for m_h

BACKUP: PYTHIA

- 10 k events \Rightarrow 85 fb⁻¹
- $\sigma_{LO} = 116.5 \, \text{fb}$
- Simplifying approximations:
 - No detector effects
 - 2 No trigger
 - 3 Basic kinematic cuts, e.g., η within detector, p_T , E_T and j and ℓ
- Likelihood functions for Higgs and Ωh^2 :

1
$$\mathcal{L}(h) = \exp\left[-\frac{(125.8 \,\text{GeV} - m_h)^2}{2((0.6 \,\text{GeV})^2 + (3 \,\text{GeV})^2)}\right]$$

2 $\mathcal{L}(\Omega h^2) = \exp\left[-\frac{(0.1186 - \Omega h^2)^2}{2(0.0031^2 + (0.1\Omega h^2)^2)}\right]$

Particle	Mass (GeV)					
$\tilde{\chi}_1^0 = \chi$	316.2	$ ilde{e}_L$	553.5	\tilde{d}_L	154.6 h	123.2
$\tilde{\chi}_2^{\dot{0}}$	603.6	$ ilde{m{ extsf{e}}}_{R}$	364.7	\tilde{d}_R	147.9 <i>H</i>	1484.9
$\tilde{\chi}_3^{\overline{O}}$	1394.0	$\tilde{\nu}_{\Theta}$	547.8	\tilde{u}_L	154.5 A	1485.6
$\tilde{\chi}_4^{0}$	1397.9	$ ilde{ au}_1$	318.3	Ũ _R	148.5 <i>H</i> ±	1487.9
$\tilde{\chi}_1^{\pm}$	603.8	$\tilde{ au}_2$	543.6	$ ilde{m{b}}_1$	1277.9	
$\tilde{\chi}_2^{\pm}$	139.8	$\tilde{\nu}_{\tau}$	534.6	\tilde{b}_2	1463.6	
ĝ	1675.1			\tilde{t}_1	821.5	
				\tilde{t}_2	1328.3	

イロト イ団ト イヨト イヨト

2

Parameter	Description	Prior range	Distribution	
m_0	Unified scalar mass	(0.1, 4)TeV	Flat	
$m_{1/2}$	Unified gaugino mass	(0.1, 2) TeV	Flat	
A_0	Unified trilinear	(-4, 4) TeV	Flat	
tan β	Ratio of Higgs vevs	(3, 62)	Flat	
sgn μ	Sign of Higgs parameter	+1	Fixed	
m _t	Top pole mass	173.5GeV	Fixed	
$m_b(m_b)^{\overline{MS}}$	Bottom running mass	4.19GeV	Fixed	
$1/lpha_{ m em}(M_Z)^{\overline{MS}}$	Inverse of EM coupling	0.1184	Fixed	
$\alpha_s(M_Z)^{\overline{MS}}$	Strong coupling	127.944	Fixed	

BACKUP: INVARIANT MASS DISTRIBUTIONS

$q\ell\ell$ threshold QII final allmax 1750 865.: RMS 348 120 100 80 60 40 20 n 200 400 600 800 1000 1200 1400

33 / 35

(日)

BACKUP: ENDPOINTS

- Left-handed slepton dominates golden decay
- Squark is average of squark masses
- Edges for our benchmark:

1
$$m_{\ell\ell}^2 = 197.5 \,\text{GeV}$$

2 $m_{\ell q, \text{ high}}^2 = 1052.1 \,\text{GeV}$
3 $m_{\ell q, \text{ low}}^2 = 511.0 \,\text{GeV}$
4 $m_{\ell q q, \text{ edge}}^2 = 1091.8 \,\text{GeV}$
5 $m_{\ell q q, \text{ threshold}}^2 = 380.3 \,\text{GeV}$

$$\begin{array}{l} \bullet \quad \text{Observable predictions and } \chi^2:\\ \quad b \rightarrow s\gamma = 3.04 \times 10^{-4} \ \chi^2 = 3.2\\ \quad B_s \rightarrow \mu^+ \mu^- = 3.18 \times 10^{-9} \ \chi^2 = 0.0\\ \quad B_u \rightarrow \tau \nu = 1.00 \ \chi^2 = 0.0\\ \quad \Delta M_{B_s} = 21.35 \ \text{ps}^{-1} \ \chi^2 = 2.2\\ \quad \delta a_\mu = 3.87 \times 10^{-10} \ \chi^2 = 9.5\\ \quad h = 123.15 \ \text{GeV} \ \chi^2 = 0.7\\ \quad m_t = 175.0 \ \text{GeV} \ \chi^2 = 2.3\\ \quad M_W = 80.38 \ \text{GeV} \ \chi^2 = 2.3\\ \quad M_W = 80.38 \ \text{GeV} \ \chi^2 = 0.4\\ \quad \Omega h^2 = 0.11 \ \chi^2 = 0.2\\ \quad \sigma_p^{\text{SI}} = 7.19 \times 10^{-11} \ \text{cm}^2 \ \chi^2 = 0\\ \quad \text{sin} \ \theta_{\text{eff}} = 0.2314 \ \chi^2 = 1.5\\ \hline \text{With} \ \delta a_\mu, \ \text{total} \ \chi^2 = 9.7 \ \text{with} \ 10 \ \text{degrees of freedom}\\ \quad p \text{-value} \gtrsim 5\%\\ \hline \end{array}$$

• p-value $\approx 50\%$