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P-values

P-value
The p-value, p, is the probability of observing data as or more
extreme than that observed, given the null hypothesis, H0, i.e.,

p = P(λ ≥ λObserved |H0)

where λ is a test-statistic that summarises the data and defines
extremeness.
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P-values in high-energy physics

In high-energy physics, we want to discover new phenomena and
new particles. Perform null hypothesis test:

• H0 — Standard Model (SM) backgrounds only

• H1 — SM + new physics, e.g. Higgs boson or supersymmetric
particles

We conventionally require a tiny global p-value less than about
10−7, corresponding to 5σ

Original artwork Viktor Beekman and concepts Eric-Jan Wagenmakers

https://www.bayesianspectacles.org/library/
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Higgs discovery

Classic example. Higgs discovery in 2012 (Aad et al. 2012).

Wait until reach 5σ global. We need to compute tiny p-values.



Why is it di�icult to compute small p-values?
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Illustrate problem with two-dimensional data, x.

Whole sample space

Ine�icient to sample from here!

Tiny area
corresponding
to p-value
Sampling here won’t tell us its relative size!

In reality, red region exponentially tiny. Illustrate with squares but
assume nothing about geometry/topology in problem or solution.
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Sample from whole sample space — Monte Carlo

Estimate red area by random sampling

Draw n samples from whole sampling distribution. We really need
at least one sample to fall in red region.
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Sample from whole sample space — Monte Carlo

Estimate p by fraction of them that fall in red region

p̂ =
m
n

Error of order Wald (Brown, Cai, and DasGupta 2001)

∆p
p

=

√
1/p

n

Usual 1/
√

n statistical error scaling. For fixed fractional
uncertainty, number of samples scales as 1/p

Need n & 1/p at very least for reasonable estimate.



8/21

Asymptotics

If we have some more information, we can compute p analytically.

• E.g., I know the red area is a box of side 0.05. p = 0.052.

• Sometimes, we know (or hope!) our problem satisfies certain
regularity conditions and large sample limit. We can apply
asymptotics (Cowan et al. 2011).

But the conditions aren’t always satisfied.

We want generality. Generality is power to tackle any problem we
want.



Nested sampling
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Nested sampling

Nested sampling (Skilling 2004; Skilling 2006) originally algorithm
for Bayesian computation. We reinterpreted it in the context of
p-values

• Evolves collection of nlive live points to greater and greater
test-statistics

• Evolution controlled by single user parameter — nlive

• Replaces one point at a time

• Meta-algorithm — di�erent solutions to finding replacement
points

• Many existing public implementations
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General idea

1. Sample n points from the sampling distribution
2. Rank them by test-statistic
3. Delete the least extreme half

You just compressed by factor 1/2! Repeat it i times and you’ll
achieve exponential compression 1/2i at a constant rate!

If it took niter iterations to reach the area corresponding to p-value,
then

p =
1

2niter
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Complete algorithm

1. Draw nlive sets of pseudo-data from the sampling
distribution — the live points

2. Initialize niter = 0
3. repeat
4. niter = niter + 1
5. Find the minimum TS λ? amongst the live points
6. Replace live point corresponding to λ? by one drawn

from the sampling distribution subject to λ > λ?

7. until λ? ≥ λObserved

8. return Estimate of p = e−niter/nlive
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Why does that work?

• By replacing half the points, we compress by 1/2 per iteration

• That isn’t optimal — be�er to replace one point at a time

• Compress by about e−1/nlive ' 1− 1/nlive each iteration

This breaks the computation of a tiny p-value into the product of niter

moderate factors

p =
niter

∏
i=1

e−1/nlive = e−niter/nlive
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Nested sampling

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Test statistic λ

PD
F(
λ

)

Evaluate λ for n sets of
randomly generated pseudo-data

Monte Carlo
random samples

Tail area ≈
fraction of samples
above critical value

Monte Carlo

Critical λ

Test statistic λ

At each iteration:
• threshold λ? increases
• draw from λ>λ?
• area compresses by ∼ e−1/nlive

Tail area ≈ yellow area
when threshold reaches

critical λ

Nested sampling

Thresholds λ? Critical λ

Compress into tail of TS distribution. Stop once we get to p-value.
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Theoretical speedup

For fixed fractional uncertainty on p, we expect to obtain a
speed-up versus MC

Evaluations for NS
Evaluations for MC

=
(log2 1/p)/ε

1/p

Massive gains for small p! Provided that the e�iciency factor ε

doesn’t spoil things.



Exploration
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Exploration

So far nothing depended on the problem at hand or the dimension
of the sampling space. I glossed over a detail though

• How to draw a replacement live point from the constrained
sampling distribution, λ > λ??

• Involves trial and error, and some ine�iciency (the factor ε)

• Re-introduces dependence on dimensionality of the sampling
space (though it needn’t be exponential)
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Strategies

MultiNest (Feroz and Hobson 2008; Feroz, Hobson, and Bridges
2009; Feroz et al. 2013) — bound live points by ellipsoids that
approximate the λ? contour and sample from them

PolyChord (Handley, Hobson, and Lasenby 2015a; Handley,
Hobson, and Lasenby 2015b). Take walk starting from a randomly
chosen existing live point — in PolyChord a slice sampling walk.

Ellipsoid sampling

Region sampling

Dead

New

Reject

Random walk

Step sampling

Start

End

Slice sampling

Start

End



Example & Tools
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A simple problem

The p-value associated with d independent Gaussian
measurements

• d dimensional sampling space, xi ∼ N (µ, σ2).

• Test-statistic

λ =
d

∑
i=1

(
xi − µ

σ

)2

• We know analytically

λ ∼ χ2
d such that p = 1− Fχ2

d
(λObserved)

• Toy example that allows us to easily control dimension, size of
p and check correctness
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Number of evaluations for fixed fractional uncertainty
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Perfect NS means if 100% e�iciency, ε = 1, was possible
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Performance on simple problem

• For large p, nested sampling could only narrowly beat MC in
the best-case scenario, and typically worse. MC just fine
when p is moderate

• For small p . 4σ, the scaling kicks in. Nested sampling wins
by orders of magnitude

• Nested sampling performance depends on dimensionality but
even for 30d sampling space, winning by 106 at 7σ
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Implemeting the example in Python

Import our PolyChord wrapper from our code
� github.com/andrewfowlie/ns for p values

≫ from p value import pc

This wraps PolyChord to enable the required stopping conditions
and return the p-value from NS.

We also wrapped dynesty and MultiNest. Healthy ecosystem of
publicly available NS implementations and NS analysis so�ware.

https://github.com/andrewfowlie/ns_for_p_values
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Implemeting the example in Python

Make a function that transforms U(0, 1) draws to chi-squared
draws. These chi-squared draws are the pseudo-data

≫ from scipy.stats import chi2

≫ def transform(unit hyper cube):
. . . return chi2.ppf(unit hyper cube, df=1)

This is the inverse transform method using the chi-squared
distribution’s percent point function — chi2.ppf
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Implemeting the example in Python

Define the test-statistic — here it’s just the sum of the chi-squared
draws

≫ def test statistic(data):
. . . return data.sum()
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Implemeting the example in Python

Run PolyChord on this problem for 5 draws and an observed
λ = 50, and using 100 live points.

≫ n dim = 5
≫ observed = 50.
≫ pc(test statistic, transform, n dim, observed,

n live=100)

Same signature for our MultiNest and dynesty wrappers, just
replace pc with mn or dynesty.

Simple easy-to-use signature. Wraps established, fast libraries for
NS.
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Implemeting the example in Python

The results are displayed as

p-value = (1.5910 +/- 0.7161)e-09.
log10(p-value) = -8.7983 +/- 0.19548.
Signifiance = 5.922 sigma.
Function calls = 309765

We computed a p-value of 1 in a billion in only 300,000 calls!
Agrees with analytic result within uncertainty:

≫ chi2.sf(50, df=5)
1.3857973367009573e-09
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Summary

• Nested sampling particularly suitable for p-value
computation, as it naturally builds path to the p-value

• Orders of magnitude faster than Monte Carlo for small p, as
scaling log2 1/p rather than 1/p for fixed relative error

• Performance understood theoretically and demonstrated
numerically

• With small modifications, standard nested sampling so�ware
can be used to compute p-values

• � github.com/andrewfowlie/ns for p values

https://github.com/andrewfowlie/ns_for_p_values
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