Origins of parameters in adimensional models

Andrew Fowlie

28 September 2023

1. Renormalization & QFT

- 2. Adimensional models
- 3. Invariant measures
- 4. Examples

Renormalization & QFT

Nutshell

- Physical theory with some parameters λ describing some phenomena
- "Conditions" temperature, electric field, magnetic field, pressure – change
- Do we need a new theory?
- Not necessarily. Renormalize parameters λ adjust them but keep same theory
- For example, if changing temperature, *T*, promote $\lambda \rightarrow \lambda(T)$

Ball in water

- Consider a ball of mass *m* and volume *V*
- Acceleration follows Newton's second law

$$F = ma$$

- Now put the ball under water fluid of density ρ
- Does Newton's second law hold?

- No! To accelerate the ball, you need to move the ball and the water in front of it
- However, we can renormalize the mass

$$m_R = m + \frac{1}{2}V\rho$$

Newton's second law holds in the form

$$F = m_R a$$

• The renormalized mass is a function of density, $m_R = m_R(\rho)$

Lessons from PHY002 - dielectrics

Once you see renormalization, it's everywhere

• Capacitance of a paralell plate capacitor in vacuum

$$C = \epsilon_0 \frac{A}{d}$$

• Capacitance of a paralell plate capacitor with a dielectric

$$C = \epsilon \frac{A}{d}$$

Nutshell

- Quantum Field Theory (QFT) theory of fundamental particles
- Governs how particles behave particle masses and interaction strengths
- Combines special relativity and quantum mechanics
- Experimentally tested to extraordinary precision

Why fields?

- In QM meausing observable 2 may impact observable 1 observables needn't commute, $[O_1, O_2] \neq 0$
- What if light wouldn't have enough time to travel from measurement 1 to measurement 2 — measurements are space-like separated
- Faster-than-light signalling!

- Observables must be attached to space-time points
- If light wouldn't have enough time to travel between measurements, we make sure the measurements cannot impact each other
- Technically, observables in the theory must satisfy

$$[O_1(x), O_2(y)] = 0$$
 if $(x - y)^2 < 0$

- Thus we need to attach observables to space-time points thus, we use fields, $\phi(x)$
- Fields are forced on us by combining QM and special relativity

Nutshell

- Just like the ball in water
- The way particles interact depends on the characteristic energy of the interaction
- If you want to predict physics at a different energy, don't throw out the theory
- Keep the theory, but renormalize the parameters as functions of energy

Renormalization group equations

- This theory is relativistic $-E = mc^2$ means that particles can be created from energy
- This impacts the interaction between, e.g., an electron and a photon

- In the tree-level diagram, the electron and photon field interact with strength α
- There are, though, heaps of corrections

Renormalization group equations

- As we change energy, loops of particles may become more relevant
- We can change α to incorporate the impact of the loops
- Parameter dependence on energy governed by differential equations – reormalization group equations – e.g.,

$$\frac{d\alpha}{d\ln Q} = \beta_0 \alpha^2 + \cdots$$

■ The coupling is said to run with energy

Adimensional models

Hierarchy problem

- Scalar fields trivial representation of Lorentz group aren't protected from quantum corrections
- Their masses receive enormous quantum corrections, e.g., from quantum gravity

$$m^2 = m_0^2 + M_{\rm Pl}^2$$

• The Planck mass, $M_{\rm Pl} \approx 10^{19} \, {\rm GeV} \approx 10^{-8} \, {\rm kg}$, is scale at which gravity similar in strength to other forces

$$M_{\rm PI} = \sqrt{\frac{\hbar c}{G}}$$

- Planck mass similar to mass of speck of flour!
- The unit $1 \text{ GeV} \simeq 10^{-27} \text{ kg similar to mass of proton}$

In a nutshell

We observe that scale of elementary particle physics

$$m^2 pprox (100 \,\mathrm{GeV})^2 \lll M_{\mathrm{Pl}}^2$$

Fine-tuning between m_0^2 and M_{Pl}^2 – require

$$m_0^2 = -(10^{19} \,\mathrm{GeV})^2 + (100 \,\mathrm{GeV})^2$$

Ugly, unnatural and moreover implausible

$m_0^2 = -99\,999\,999\,999\,999\,999\,999$ 999 999 999 999 990 000 GeV²

- Since the 1980s, model-building in high-energy physics focussed on solving the hierachy problem
- In other words, building theories that predicted m² « M²_{Pl} and didn't need fine-tuning
- All attempts to do so introduce new particles with masses just above 100 GeV
- New physics that could be observed in particle colliders
- Most popular models were supersymmetry (SUSY), including supersymmetric grand unified theories (GUTs)

In a nutshell

- Hang on. Have you seen the LHC results?
- No supersymmetry. No large extra dimensions. No signatures of any new particles near 100 GeV
- Maybe there are no new particles (Foot et al., 2008; Heikinheimo et al., 2014; Gabrielli et al., 2014; Englert et al., 2013; Kannike, Racioppi, and Raidal, 2014)
- The top quark is the heaviest known particle, $m_t \simeq 170 \, {
 m GeV}$
- Maybe the top really is the top

Traditional picture

$$10^{19} - M_{Pl}$$

$$10^{16} - GUT$$

$$10^{13} - GUT$$

$$10^{10} - GUT$$

$$- GUT$$

$$M_W$$

$$m_P$$

$$10^{-2} - m_e$$

Figure: Succession of massive scales and new physics. Hierarchy problems.

Adimensional picture

Figure: The top is the top. No bigger scales. No hierarchy problems.

- No fundamental dimensional constants in nature (Salvio and Strumia, 2014)
- No exotic physics or strings just QFT
- All scales generated by quantum effects
- For example, consider Newtonian gravity between two masses

$$F = G \frac{m_1 m_2}{r^2}$$

G = 6.67 × 10⁻¹¹ m³kg⁻¹s⁻²

- Newton's constant G is dimensional
- Must be generated by quantum effects

- There are massive scales in Nature but they cannot appear explicitly in the Lagrangian
- This is the phenomena of dimensional transmutation could be Coleman-Weinberg mechanism or confinement
- No massive corrections to scalar masses

$$\Delta m^2 = M_{\rm Pl}^2 = 0$$

on dimensional grounds — nothing to put on the right-hand side (Bardeen, 1995)

No hierarchy problem

Can that really work?

What about gravity?

- Gravity governed by dimensional parameter, $G \sim 1/M_{Pl}^2$
- However, quadratic gravity (Salvio, 2018; Donoghue and Menezes, 2022) is adimensional and renormalizable
- Suffers from Ostrogradsky instability or ghosts, though may be viable (Salvio and Strumia, 2016; Raidal and Veermäe, 2017; Strumia, 2019; Gross et al., 2021; Donoghue and Menezes, 2021)
- No easy path to quantum gravity; must consider paths with obstacles

Origins of fundamental parameters

- Deep question what is the origin of our fundamental parameters?
- Adimensional models posit no new dimensional physics
- Nothing exotic or dramatic at high energies no strings etc, just QFT
- I don't know any QFT that can explain its fundamental parameters
- Does it close door for explanations of fundamental parameters?

Profound consequences

The Humbers that Encode the Deepest Secrets of the Universe John D. Barrow

Author of The Book of Nothing and Theories of Everything

Figure: Explored in popular science but rarely in research

- Perhaps fundamental parameters are randomly chosen
- From what distribution?
- If there are no fundamental scales, that distribution had better not depend on any scale
- We must find distributions for an adimensional theory's dimensionless parameters that don't refer to any particular dimensional scales

- If there are fundamental scales, the distributions could be scale dependent
- In grand unified theories (GUTs), for example, we might assume there is a special unification scale, *M*_X
- We could write distributions for a unified coupling at that scale, $Q \approx M_X$
- They would look different at other scales, but that's alright as M_X is special

Invariant measures

• The densities for a parameter y = f(x) and x are connected by

$$p_Y(y) = p_X(x) |\mathcal{J}|$$

- where $|\mathcal{J}|$ is the Jacobian for the transformation between *x* and y
- In this simple one-dimensional case,

$$|\mathcal{J}| = \left|\frac{dx}{dy}\right|$$

The distribution would be invariant under this transformation if p_X and p_Y were the same function,

$$p \equiv p_Y = p_X$$

■ Formally, *p*(*x*)*dx* would be an invariant measure (see e.g., Hartigan, 1964; Jaynes, 1968; Dawid, 2006; Consonni et al., 2018)

- Measure assigns non-negative value to subsets of a space
- Must satisify

$$\mu(\phi) = 0$$
 and $\mu(\cup_i A_i) = \sum_i \mu(A_i)$

for disjoint sets A_i

Further conditions for a probability measure, e.g., probability on A satisfies $\mu(A) = 1$ and A is a σ -algebra

Topological group

- The parameter transformations may form a topological group
- Requires that transformations are continuous, associative and closed, and the existence of an inverse and an identity
- The topological space may be locally compact no holes or spikes — in which case the group is said to be locally compact
- The real numbers topological group under addition and locally compact as no holes
- The group parameters may be defined on a closed interval, in which case the group is said to be compact
- Lorentz group defined on [0, c) not compact

A (right) invariant measure satisfies

$$\mu(S) = \mu(Sg)$$

for every subset *S* and every group element *g*

- This invariant measure is the (right) Haar measure of the group
- Haar measure natural notion of volume

■ Haar measure exists for any locally compact group
 ■ Though proper - µ(G) < ∞ - if and only if group is compact

- Consider the reals and the transformation $x \rightarrow x + A$
- The invariant measure is the Lebesgue measure

$$\mu([x,y]) = x - y$$

• The invariant distribution $p(x)dx \propto \mu(dx)$ is simply

 $p(x) \propto \text{const.}$

- Consider the reals and the transformation $x \rightarrow Ax$
- The invariant measure is more involved

$$\mu([x,y]) = \log y - \log x$$

The invariant distribution is

$$p(x) \propto \frac{1}{x}$$

or equivalently,

 $p(\log x) \propto \text{const.}$

- The scale and shift invariant distributions are examples of improper distributions
- They weren't compact spaces
- They cannot be normalised to one because

$$\int p(x)dx = \infty$$

- We cannot sample from them
- Not useless, however, as improper prior + likelihood may lead to a proper posterior

$$\int p(K \,|\, x) p(x) dx < \infty$$

- The number of distributions that can be found by a group invariance is equal to the size of the invariance group, n
- We can re-parameterise our *d* dimensional space as *n* parameters and d - n group invariants
- For example, rotations in *d* dimensions an invariant radius and d-1 angles
- The measures for the invariants are arbitrary as they do not transform under the group
- $|\mathcal{J}| = 1$ for the invariants

- Suppose that we considered dependent re-scalings for two parameters, $x \rightarrow Ax$ and $y \rightarrow Ay$
- Invariance cannot uniquely dictate the form of the two-dimensional prior, as it could be

$$p(x,y) \propto \frac{f(x/y)}{xy}$$

- x/y is a group invariant
- The function f isn't restricted, though it must satisfy

$$\int f(z)dz = 1$$

Similarly, if we were to consider dependent shifts, $x \rightarrow x + A$ and $y \rightarrow y + A$, we would obtain

$$p(x,y) \propto f(x-y)$$

- x y is a group invariant
- The function *f* isn't restricted, though it must satisfy

$$\int f(z)dz = 1$$

- We want to construct distributions for an adimensional theory's parameters that don't refer to any particular dimensional scale
- We must consider the RG evolution of the parameters and build the RG invariant measures and distributions
- If we succeed, fundamental parameters could be draws from these distributions
- If we fail, the parameters must originate in some other way

Examples

• The β -function in QCD

$$rac{dlpha_s}{d\ln Q} = -eta_0 lpha_s^2 \quad ext{where} \quad eta_0 > 0$$

Solving this differential equation yields

$$\alpha_s(Q) = \frac{\alpha_s(Q')}{1 - \alpha_s(Q') \beta_0 \ln (Q'/Q)}$$

This may be re-written as

$$\alpha_s(Q) = \frac{1}{\beta_0 \ln \left(Q / \Lambda_{\rm QCD} \right)}$$

This used the RG-invariant QCD scale

$$\Lambda_{\rm QCD} = Q e^{-\frac{1}{\beta_0 \alpha_s(Q)}}$$

- The coupling flows to $\alpha_S = 0$ asymptotic freedom
- This is a UV attractor
- Landau-pole finite-time blow up in the IR at the QCD scale
- RG evolution through Landau pole impossible

QCD RG flow

Figure: RG flow in QCD.

QCD RG flow

- We cannot evolve through Landau pole
- The RG transformations aren't closed as evolving to $Q < \Lambda_{\rm QCD}$ undefined
- This means that an invariant measure cannot exist
- For illustrative purposes, suppose

$$\alpha_s(Q) = \frac{1}{\beta_0 \ln\left(Q/\Lambda_{\rm QCD}\right)}$$

valid for any Q

 \blacksquare The Jacobian for flowing from $Q \rightarrow Q'$

$$|\mathcal{J}| = \left|\frac{d\alpha_s(Q')}{d\alpha_s(Q)}\right| = \left|\frac{\alpha_s(Q')}{\alpha_s(Q)}\right|^2$$

The Jacobian rule leads to

$$p(\alpha_s(Q)) = p'(\alpha_s(Q')) |\mathcal{J}|$$

• Requiring that p = p' gives an invariant distribution

$$p(\alpha_s) \propto \frac{1}{\alpha_s^2}$$

Wonderful! but improper!

$$\int_0 \frac{d\alpha}{\alpha^2} = \infty$$

Why is it improper, physically?

Flows through Landau pole from $-\infty \to \infty$

Figure: We cannot cross from +0 to -0

■ The invariant measure for the QCD coupling leads to

 $p(\log \Lambda_{\rm QCD}) = {\rm const.}$

■ This is a scale invariant distribution — invariant under

 $\Lambda_{\rm QCD} \rightarrow A \Lambda_{\rm QCD}$

- Intuitive how could there be any preferred QCD scale in the theory?
- Improper having no preferred scale means that it is improper

- The group wasn't compact; specifically, as we omitted $\alpha = 0$
- $\alpha = 0$ trivial; stays zero forever
- If included, the invariant measure is a Dirac mass at zero, $\delta(\alpha)$

 In our physics education, we have a series of shocks when we discover seeming important quantities can be set arbitrarily, e.g.,

$$c = \hbar = G = 1$$

• We can use Λ_{QCD} to define a system of units

 $\Lambda_{\rm QCD} = 1$

Measure any other scales relative to QCD scale

Would this work in realistic models?

- In principle, more realistic models are no different
- If RG flows forms locally compact group, invariant distribution should exist
- Though only proper if flow forms compact group
- In practice, much harder as we cannot compute the RG invariants or solve the RG equations analytically
- Maybe there are short-cuts?
- For example, Ulam's method or the ergodic hypothesis that time-averages equal space-averages

- Adimensional models could solve the hierarchy problem
- Possibly leads to renormalizable quadratic gravity, though these theories are pathological even at the classical level
- Predict no fundamental scales at all
- If parameters originate as random draws, distributions must be scale invariant
- Explored scale invariant distributions in simple models
- This involves finding the invariant Haar measure of RG transformations
- Finite-time blow-up (Landau poles) cause difficulties

Backup

- QCD was trivial $-\Lambda_{QCD} = 1$
- Scalar QED suffered from Landau poles in the IR and UV
- Consider theory with no Landau poles in UV easiest theories are totally asymptotically free theories (Giudice et al., 2015)
- Make a simple model a scalar with a non-Abelian gauge interaction
- Leave it general don't specify group or particle content

- Form of RG equation for the gauge coupling identical to that in QCD — no Landau pole in UV
- Agnostic about form of quartic RG equation;

$$\frac{d\lambda}{d\ln Q} = s_\lambda \lambda^2 - s_{\lambda g} \lambda g^2 + s_g g^4$$

In known QFT, coefficients s > 0

Convenient to define

$$C \equiv \frac{s_g}{\beta_0}$$
$$D \equiv \frac{s_{\lambda g} - \beta_0}{2s_g}$$
$$E \equiv D^2 - \frac{s_\lambda}{s_g}$$

- For E = 0, trivial fixed-flow
- For *E* < 0, Coleman-Weinberg type behaviour tangent that swings rapidly between Landau poles
- For E > 0, may avoid Landau poles

RG flow in simple TAF model

Figure: Flow contained between attractors

The attractors are at

$$R_{\rm IR} = \frac{1}{D - \sqrt{E}}$$
 and $R_{\rm UV} = \frac{1}{D + \sqrt{E}}$.

■ If at any scale the ratio lies inside [*R*_{UV}, *R*_{IR}], it stays trapped inside that interval

$$R(Q) \equiv \frac{\lambda(Q)}{4\pi\alpha(Q)}$$

= $R_{\rm IR} + (R_{\rm UV} - R_{\rm IR}) \frac{1}{2} \left[1 - \tanh\left(C\sqrt{E}\ln\alpha(Q) + \Theta\right) \right]$

R = R_{UV} and R = R_{IR} are special fixed flows
Otherwise, it flows to a Landau pole in the IR or UV

Inside the solution

$$R(Q) = R_{\rm IR} + (R_{\rm UV} - R_{\rm IR}) \frac{1}{2} \left[1 - \tanh\left(C\sqrt{E}\ln\alpha(Q) + \Theta\right) \right]$$

the red factor goes from 0 in the IR to 1 in the UV
Θ is an RG invariant,

$$\Theta = \operatorname{arctanh}\left[1 - 2\left(\frac{R(Q) - R_{IR}}{R_{UV} - R_{IR}}\right)\right] - C\sqrt{E}\log\alpha(Q)$$

• It controls R(Q')

• Computing the Jacobian, we find an RG invariant measure on (R_{UV}, R_{IR}) ,

$$p(R \mid \alpha) \propto \frac{f(\Theta)}{(R_{\rm IR} - R) (R - R_{\rm UV})}$$
$$p(\alpha) \propto \frac{1}{\alpha^2}$$

- Conditional distribution $p(R \mid \alpha)$ has poles at attractors
- Proper so long as $f(\Theta)$ is proper
- Same form at every scale; though shape of distributions flows as *α* flows

Role of $f(\Theta)$

• $\Theta \equiv \Theta(R, \alpha)$ — invariant though function of R and α

• The function $f(\Theta)$ must satisfy

$$\int f(\Theta)d\Theta = 1$$

and thus must satisfy

$$\lim_{|\Theta|\to\infty}f(\Theta)=0$$

Consider behaviour of

$$R(Q) = R_{\rm IR} + (R_{\rm UV} - R_{\rm IR}) \frac{1}{2} \left[1 - \tanh\left(C\sqrt{E}\ln\alpha(Q) + \Theta\right) \right]$$

- In the IR where $\ln \alpha \to \infty$, $R \to R_{UV}$ requires $\Theta \to -\infty$
- In the UV where $\ln \alpha \to -\infty$, $R \to R_{IR}$ requires $\Theta \to \infty$

Controls flow

- Thus the function *f*(Θ) must disfavour *R*_{UV} in the IR and *R*_{IR} in the UV
- Controls flow of probability from R_{IR} in the IR to R_{UV} in the UV

Now, as an example, consider a standard normal, $f(\Theta) = \mathcal{N}(0, 1)$ with $R_{\rm IR} = 2$ and $R_{\rm UV} = 1$

Measure flows between IR and UV attractor

Figure: The measure moves the probability mass between the attractors

- We considered (R_{IR}, R_{UV}) , i.e., omitting the endpoints
- Dirac mass at the attractors would also be invariant

$$p(R) = \delta(R - R_{\rm IR/UV})$$

They could be combined with our invariant distribution

- Discussed in ref. (Giudice et al., 2015)
- Certainly possible, though requires big representations and big groups
- Easier if add Yukawa interactions, though RG equations become harder to solve

References I

- Bardeen, W. A. (Aug. 1995). "On naturalness in the standard model". *Ontake Summer Institute on Particle Physics*.
- Consonni, G. et al. (2018). "Prior Distributions for Objective Bayesian Analysis". *Bayesian Analysis* 13.2, pp. 627–679. URL: https://doi.org/10.1214/18-BA1103.
- Dawid, A. P. (2006). "Invariant Prior Distributions". Encyclopedia of Statistical Sciences. Wiley. ISBN: 9780471667193.
- Donoghue, J. F. and G. Menezes (2021). "Ostrogradsky instability can be overcome by quantum physics". *Phys. Rev. D* 104.4, p. 045010. arXiv: 2105.00898 [hep-th].
- (2022). "On quadratic gravity". Nuovo Cim. C 45.2, p. 26. arXiv: 2112.01974 [hep-th].
- Englert, C. et al. (2013). "Emergence of the Electroweak Scale through the Higgs Portal". JHEP 04, p. 060. arXiv: 1301.4224 [hep-ph].

References II

- Foot, R. et al. (2008). "A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory". *Phys. Rev. D* 77, p. 035006. arXiv: 0709.2750 [hep-ph].
- Gabrielli, E. et al. (2014). "Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter". *Phys. Rev. D* 89.1, p. 015017. arXiv: 1309.6632 [hep-ph].
- Giudice, G. F. et al. (2015). "Softened Gravity and the Extension of the Standard Model up to Infinite Energy". *JHEP* 02, p. 137. arXiv: 1412.2769 [hep-ph].
- Gross, C. et al. (2021). "Is negative kinetic energy metastable?" *Phys. Rev. D* 103.11, p. 115025. arXiv: 2007.05541 [hep-th].
- Hartigan, J. (1964). "Invariant Prior Distributions". The Annals of Mathematical Statistics 35.2, pp. 836–845. URL: https://doi.org/10.1214/aoms/1177703583.

References III

- Heikinheimo, M. et al. (2014). "Physical Naturalness and Dynamical Breaking of Classical Scale Invariance". *Mod. Phys. Lett. A* 29, p. 1450077. arXiv: 1304.7006 [hep-ph].
- Jaynes, E. T. (1968). "Prior probabilities". *IEEE Transactions on Systems Science and Cybernetics* 4, 227, URL.
- Kannike, K., A. Racioppi, and M. Raidal (2014). "Embedding inflation into the Standard Model more evidence for classical scale invariance". *JHEP* 06, p. 154. arXiv: 1405.3987 [hep-ph].
- Raidal, M. and H. Veermäe (2017). "On the Quantisation of Complex Higher Derivative Theories and Avoiding the Ostrogradsky Ghost". Nucl. Phys. B 916, pp. 607–626. arXiv: 1611.03498 [hep-th].
- Salvio, A. (2018). "Quadratic Gravity". *Front. in Phys.* 6, p. 77. arXiv: 1804.09944 [hep-th].
- Salvio, A. and A. Strumia (2014). "Agravity". *JHEP* 06, p. 080. arXiv: 1403.4226 [hep-ph].

- Salvio, A. and A. Strumia (2016). "Quantum mechanics of 4-derivative theories". *Eur. Phys. J. C* 76.4, p. 227. arXiv: 1512.01237 [hep-th].
- Strumia, A. (2019). "Interpretation of quantum mechanics with indefinite norm". *MDPI Physics* 1.1, pp. 17–32. arXiv: 1709.04925 [quant-ph].