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Renormalization & QFT



Renormalization

Nutshell

Physical theory with some parameters λ — describing some
phenomena

“Conditions” — temperature, electric field, magnetic field,
pressure — change

Do we need a new theory?

Not necessarily. Renormalize parameters λ — adjust them but
keep same theory

For example, if changing temperature, T, promote λ → λ(T)
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Ball in water

Consider a ball of mass m and volume V

Acceleration follows Newton’s second law

F = ma

Now put the ball under water — fluid of density ρ

Does Newton’s second law hold?
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Ball in water

No! To accelerate the ball, you need to move the ball and the
water in front of it

However, we can renormalize the mass

mR = m +
1
2

Vρ

Newton’s second law holds in the form

F = mR a

The renormalized mass is a function of density, mR = mR(ρ)
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Lessons from PHY002 – dielectrics

Once you see renormalization, it’s everywhere

Capacitance of a paralell plate
capacitor in vacuum

C = ε0
A
d

Capacitance of a paralell plate
capacitor with a dielectric

C = ε
A
d
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Quantum Field Theory

Nutshell

Quantum Field Theory (QFT) — theory of fundamental
particles

Governs how particles behave — particle masses and
interaction strengths

Combines special relativity and quantum mechanics

Experimentally tested to extraordinary precision
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Why fields?

In QM meausing observable 2 may impact observable 1 —
observables needn’t commute, [O1,O2] 6= 0

What if light wouldn’t have enough time to travel from
measurement 1 to measurement 2 — measurements are
space-like separated

Faster-than-light signalling!

Alice measures O1 Bob re-measures
O2; may learn about
Alice’s measurement

FTL signalling
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Why fields?

Observables must be attached to space-time points

If light wouldn’t have enough time to travel between
measurements, we make sure the measurements cannot
impact each other

Technically, observables in the theory must satisfy

[O1(x),O2(y)] = 0 if (x − y)2 < 0

Thus we need to attach observables to space-time points —
thus, we use fields, φ(x)

Fields are forced on us by combining QM and special relativity
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Renormalization in QFT

Nutshell

Just like the ball in water

The way particles interact depends on the characteristic
energy of the interaction

If you want to predict physics at a different energy, don’t
throw out the theory

Keep the theory, but renormalize the parameters as functions
of energy
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Renormalization group equations

This theory is relativistic — E = mc2 means that particles can
be created from energy

This impacts the interaction between, e.g., an electron and a
photon

γ

e

e

= +
γ

e

e

+
γ

γ

e

e

+ · · ·

In the tree-level diagram, the electron and photon field
interact with strength α

There are, though, heaps of corrections
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Renormalization group equations

As we change energy, loops of particles may become more
relevant

We can change α to incorporate the impact of the loops

Parameter dependence on energy governed by differential
equations — reormalization group equations — e.g.,

dα

d lnQ
= β0α2 + · · ·

The coupling is said to run with energy
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Adimensional models



Hierarchy problem

Scalar fields — trivial representation of Lorentz group — aren’t
protected from quantum corrections

Their masses receive enormous quantum corrections, e.g.,
from quantum gravity

m2 = m2
0 + M2

Pl

The Planck mass, MPl ≈ 1019 GeV ≈ 10−8 kg, is scale at
which gravity similar in strength to other forces

MPl =

√
h̄c
G

Planck mass similar to mass of speck of flour!

The unit 1GeV ' 10−27 kg similar to mass of proton
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Hierarchy problem

In a nutshell

We observe that scale of elementary particle physics

m2 ≈ (100GeV)2 ≪ M2
Pl

Fine-tuning between m2
0 and M2

Pl — require

m2
0 = −(1019 GeV)2 + (100GeV)2

Ugly, unnatural and moreover implausible
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Solutions

Since the 1980s, model-building in high-energy physics
focussed on solving the hierachy problem

In other words, building theories that predicted m2 ≪ M2
Pl

and didn’t need fine-tuning

All attempts to do so introduce new particles with masses just
above 100GeV

New physics that could be observed in particle colliders

Most popular models were supersymmetry (SUSY), including
supersymmetric grand unified theories (GUTs)
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LHC lessons

In a nutshell

Hang on. Have you seen the LHC results?

No supersymmetry. No large extra dimensions. No signatures
of any new particles near 100GeV

Maybe there are no new particles (Foot et al., 2008;
Heikinheimo et al., 2014; Gabrielli et al., 2014; Englert et al.,
2013; Kannike, Racioppi, and Raidal, 2014)

The top quark is the heaviest known particle, mt ' 170GeV

Maybe the top really is the top
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Traditional picture
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Adimensional picture
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Adimensional models

No fundamental dimensional constants in nature (Salvio and
Strumia, 2014)

No exotic physics or strings — just QFT

All scales generated by quantum effects

For example, consider Newtonian gravity between two masses

F = G
m1m2

r2

G = 6.67× 10−11 m3kg−1s−2

Newton’s constant G is dimensional

Must be generated by quantum effects
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Adimensional models

There are massive scales in Nature but they cannot appear
explicitly in the Lagrangian

This is the phenomena of dimensional transmutation — could
be Coleman-Weinberg mechanism or confinement

No massive corrections to scalar masses

∆m2 = �
��Z
ZZM2
Pl = 0

on dimensional grounds — nothing to put on the right-hand
side (Bardeen, 1995)

No hierarchy problem
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Can that really work?
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Can that really work?

What about gravity?

Gravity governed by dimensional parameter, G ∼ 1/M2
Pl

However, quadratic gravity (Salvio, 2018; Donoghue and
Menezes, 2022) is adimensional and renormalizable

Suffers from Ostrogradsky instability or ghosts, though may
be viable (Salvio and Strumia, 2016; Raidal and Veermäe, 2017;
Strumia, 2019; Gross et al., 2021; Donoghue and Menezes,
2021)

No easy path to quantum gravity; must consider paths with
obstacles
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Origins of fundamental parameters

Deep question — what is the origin of our fundamental
parameters?

Adimensional models posit no new dimensional physics

Nothing exotic or dramatic at high energies — no strings etc,
just QFT

I don’t know any QFT that can explain its fundamental
parameters

Does it close door for explanations of fundamental
parameters?
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Profound consequences

Figure: Explored in popular science but rarely in research
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Are they random?

Perhaps fundamental parameters are randomly chosen

From what distribution?

If there are no fundamental scales, that distribution had
better not depend on any scale

We must find distributions for an adimensional theory’s
dimensionless parameters that don’t refer to any particular
dimensional scales
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Are they random?

If there are fundamental scales, the distribtuions could be
scale dependent

In grand unified theories (GUTs), for example, we might
assume there is a special unification scale, MX

We could write distributions for a unified coupling at that
scale, Q ≈ MX

They would look different at other scales, but that’s alright as
MX is special
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Invariant measures



Changing variables

The densities for a parameter y = f (x) and x are connected
by

pY(y) = pX(x) |J |

where |J | is the Jacobian for the transformation between x
and y

In this simple one-dimensional case,

|J | =
∣∣∣∣dx
dy

∣∣∣∣
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Invariant measures

The distribution would be invariant under this transformation
if pX and pY were the same function,

p ≡ pY = pX

Formally, p(x)dx would be an invariant measure (see e.g.,
Hartigan, 1964; Jaynes, 1968; Dawid, 2006; Consonni et al.,
2018)
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Measure theoretic

Measure — assigns non-negative value to subsets of a space

Must satisify

µ(φ) = 0 and µ(∪i Ai) = ∑
i

µ(Ai)

for disjoint sets Ai

Further conditions for a probability measure, e.g., probability
on A satisfies µ(A) = 1 and A is a σ-algebra
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Topological group

The parameter transformations may form a topological group

Requires that transformations are continuous, associative and
closed, and the existence of an inverse and an identity

The topological space may be locally compact — no holes or
spikes — in which case the group is said to be locally compact

The real numbers — topological group under addition and
locally compact as no holes

The group parameters may be defined on a closed interval, in
which case the group is said to be compact

Lorentz group — defined on [0, c) — not compact
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Haar measure

A (right) invariant measure satisfies

µ(S) = µ(Sg)

for every subset S and every group element g

This invariant measure is the (right) Haar measure of the
group

Haar measure natural notion of volume
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Existence of Haar measure

Haar measure exists for any locally compact group

Though proper — µ(G) < ∞ — if and only if group is compact

31



Shifting

Consider the reals and the transformation x → x + A

The invariant measure is the Lebesgue measure

µ([x, y]) = x − y

The invariant distribution p(x)dx ∝ µ(dx) is simply

p(x) ∝ const.
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Scaling

Consider the reals and the transformation x → Ax

The invariant measure is more involved

µ([x, y]) = log y − log x

The invariant distribution is

p(x) ∝
1
x

or equivalently,
p(log x) ∝ const.
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Improprietry

The scale and shift invariant distributions are examples of
improper distributions

They weren’t compact spaces

They cannot be normalised to one because∫
p(x)dx = ∞

We cannot sample from them

Not useless, however, as improper prior + likelihood may lead
to a proper posterior∫

p(K | x)p(x)dx < ∞
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Invariants

The number of distributions that can be found by a group
invariance is equal to the size of the invariance group, n

We can re-parameterise our d dimensional space as n
parameters and d − n group invariants

For example, rotations in d dimensions — an invariant radius
and d − 1 angles

The measures for the invariants are arbitrary as they do not
transform under the group

|J | = 1 for the invariants
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Examples

Suppose that we considered dependent re-scalings for two
parameters, x → Ax and y → Ay

Invariance cannot uniquely dictate the form of the
two-dimensional prior, as it could be

p(x, y) ∝
f (x/y)

xy

x/y is a group invariant

The function f isn’t restricted, though it must satisfy∫
f (z)dz = 1
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Examples

Similarly, if we were to consider dependent shifts, x → x + A
and y → y + A, we would obtain

p(x, y) ∝ f (x − y)

x − y is a group invariant

The function f isn’t restricted, though it must satisfy∫
f (z)dz = 1
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RG invariant distributions

We want to construct distributions for an adimensional
theory’s parameters that don’t refer to any particular
dimensional scale

We must consider the RG evolution of the parameters and
build the RG invariant measures and distributions

If we succeed, fundamental parameters could be draws from
these distributions

If we fail, the parameters must originate in some other way
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Examples



QCD β-function

The β-function in QCD

dαs

d lnQ
= −β0α2

s where β0 > 0

Solving this differential equation yields

αs(Q) =
αs(Q′)

1− αs(Q′) β0 ln (Q′/Q)

This may be re-written as

αs(Q) =
1

β0 ln (Q/ΛQCD)

This used the RG-invariant QCD scale

ΛQCD = Qe−
1

β0αs(Q)
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QCD RG flow

The coupling flows to αS = 0 — asymptotic freedom

This is a UV attractor

Landau-pole — finite-time blow up — in the IR at the QCD
scale

RG evolution through Landau pole impossible
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QCD RG flow
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QCD RG flow

We cannot evolve through Landau pole

The RG transformations aren’t closed — as evolving to
Q < ΛQCD undefined

This means that an invariant measure cannot exist

For illustrative purposes, suppose

αs(Q) =
1

β0 ln (Q/ΛQCD)

valid for any Q

The Jacobian for flowing from Q → Q′

|J | =
∣∣∣∣dαs(Q′)

dαs(Q)

∣∣∣∣ = ∣∣∣∣αs(Q′)

αs(Q)

∣∣∣∣2
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Invariant measure

The Jacobian rule leads to

p(αs(Q)) = p′(αs(Q′)) |J |

Requiring that p = p′ gives an invariant distribution

p(αs) ∝
1
α2

s

Wonderful! but improper!∫
0

dα

α2 = ∞
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Why is it improper, physically?
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Why is it improper, physically?

The invariant measure for the QCD coupling leads to

p(logΛQCD) = const.

This is a scale invariant distribution — invariant under

ΛQCD → AΛQCD

Intuitive — how could there be any preferred QCD scale in
the theory?

Improper — having no preferred scale means that it is
improper
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Why is it improper, group theoretically?

The group wasn’t compact; specifically, as we omitted α = 0

α = 0 trivial; stays zero forever

If included, the invariant measure is a Dirac mass at zero, δ(α)
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Does it matter?

In our physics education, we have a series of shocks when we
discover seeming important quantities can be set arbitrarily,
e.g.,

c = -h = G = 1

We can use ΛQCD to define a system of units

ΛQCD = 1

Measure any other scales relative to QCD scale
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Would this work in realistic models?

In principle, more realistic models are no different

If RG flows forms locally compact group, invariant
distribution should exist

Though only proper if flow forms compact group

In practice, much harder as we cannot compute the RG
invariants or solve the RG equations analytically

Maybe there are short-cuts?

For example, Ulam’s method or the ergodic hypothesis that
time-averages equal space-averages
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Conclusions

Adimensional models could solve the hierarchy problem

Possibly leads to renormalizable quadratic gravity, though
these theories are pathological even at the classical level

Predict no fundamental scales at all

If parameters originate as random draws, distributions must
be scale invariant

Explored scale invariant distributions in simple models

This involves finding the invariant Haar measure of RG
transformations

Finite-time blow-up (Landau poles) cause difficulties
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Backup



Total Asymptotic Freedom

QCD was trivial — ΛQCD = 1

Scalar QED suffered from Landau poles in the IR and UV

Consider theory with no Landau poles in UV — easiest
theories are totally asymptotically free theories (Giudice et al.,
2015)

Make a simple model — a scalar with a non-Abelian gauge
interaction

Leave it general — don’t specify group or particle content
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Total Asymptotic Freedom

Form of RG equation for the gauge coupling identical to that
in QCD — no Landau pole in UV

Agnostic about form of quartic RG equation;

dλ

d lnQ
= sλλ2 − sλgλg2 + sgg4

In known QFT, coefficients s > 0
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RG flow in simple TAF model

Convenient to define

C ≡
sg

β0

D ≡
sλg − β0

2sg

E ≡ D2 − sλ

sg

For E = 0, trivial fixed-flow

For E < 0, Coleman-Weinberg type behaviour — tangent that
swings rapidly between Landau poles

For E > 0, may avoid Landau poles
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RG flow in simple TAF model
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RG flow in simple TAF model

The attractors are at

RIR =
1

D −
√

E
and RUV =

1

D +
√

E
.

If at any scale the ratio lies inside [RUV, RIR], it stays trapped
inside that interval

R(Q) ≡ λ(Q)

4πα(Q)

= RIR + (RUV − RIR)
1
2

[
1− tanh

(
C
√

E ln α(Q) + Θ
)]

R = RUV and R = RIR are special fixed flows

Otherwise, it flows to a Landau pole in the IR or UV
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RG flow in simple TAF model

Inside the solution

R(Q) = RIR + (RUV − RIR)
1
2

[
1− tanh

(
C
√

E ln α(Q) + Θ
)]

the red factor goes from 0 in the IR to 1 in the UV

Θ is an RG invariant,

Θ = arctanh
[
1− 2

(
R(Q)− RIR

RUV − RIR

)]
− C

√
E log α(Q)

It controls R(Q′)
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RG flow in simple TAF model

Computing the Jacobian, we find an RG invariant measure on
(RUV, RIR),

p(R | α) ∝
f (Θ)

(RIR − R) (R − RUV)

p(α) ∝
1
α2

Conditional distribution p(R | α) has poles at attractors

Proper so long as f (Θ) is proper

Same form at every scale; though shape of distributions flows
as α flows
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Role of f (Θ)

Θ ≡ Θ(R, α) — invariant though function of R and α

The function f (Θ) must satisfy∫
f (Θ)dΘ = 1

and thus must satisfy

lim
|Θ|→∞

f (Θ) = 0

Consider behaviour of

R(Q) = RIR + (RUV − RIR)
1
2

[
1− tanh

(
C
√

E ln α(Q) + Θ
)]

In the IR where ln α → ∞, R → RUV requires Θ → −∞

In the UV where ln α → −∞, R → RIR requires Θ → ∞
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Role of f (Θ)

Controls flow

Thus the function f (Θ) must disfavour RUV in the IR and RIR
in the UV

Controls flow of probability from RIR in the IR to RUV in the
UV

Now, as an example, consider a standard normal, f (Θ) = N (0, 1)
with RIR = 2 and RUV = 1
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Measure flows between IR and UV attractor
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Dirac masses at attractors

We considered (RIR, RUV), i.e., omitting the endpoints

Dirac mass at the attractors would also be invariant

p(R) = δ(R − RIR/UV)

They could be combined with our invariant distribution
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What theories predict E > 0?

Discussed in ref. (Giudice et al., 2015)

Certainly possible, though requires big representations and
big groups

Easier if add Yukawa interactions, though RG equations
become harder to solve
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