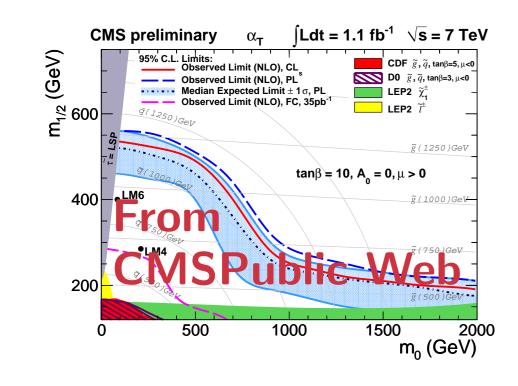


arXiv:1111.6098v1 [hep-ph]

BayesFits

Bayesian Implications of Current LHC and XENON100 Search Limits for the Constrained MSSM

Andrew Fowlie, 1 Artur Kalinowski, 2 Malgorzata Kazana, 3 Leszek Roszkowski, 1 , 3 Y.-L. Sming Tsai 3 ¹University of Sheffield, ²University of Warsaw, ³National Centre for Nuclear Research, Poland

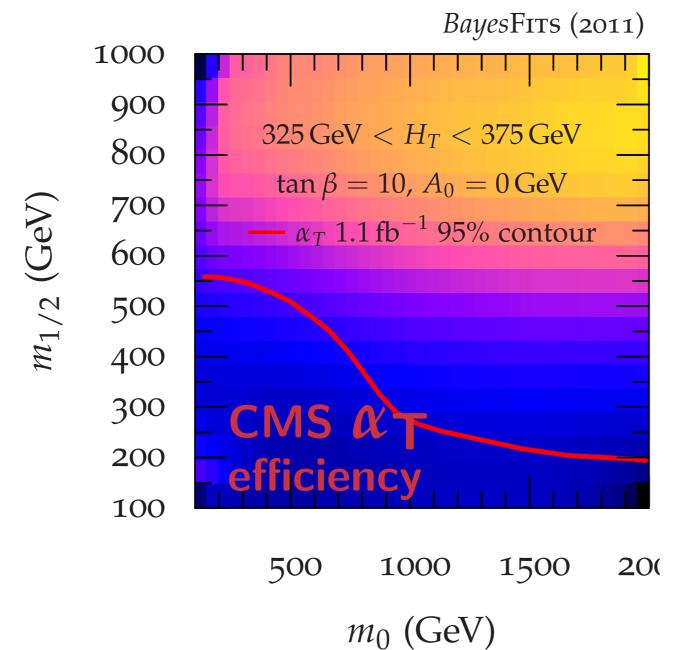

BayesFITS

- We fit the CMSSM to experimental data with Bayesian statistics
- \blacksquare Frequentist statistics considers the likelihood the probability of obtaining the experimental data given the CMSSM's parameters
- Bayesian statistics considers the the posterior the probability of the CMSSM's parameters given the experimental data
- Find the posterior with Bayes' theorem;

$p(m_0, m_{1/2}, A_0, an eta | d) \propto \mathcal{L}(m_0, m_{1/2}, A_0, an eta) imes \pi(m_0, m_{1/2}, A_0, an eta)$

- Requires that we articulate our prior knowledge of the CMSSM's parameters in the prior, $\pi(m_0, m_{1/2}, A_0, \tan \beta)$
- We use an updated version of SuperBayeS package to perform a Bayesian analysis of the CMSSM's parameter space

CMS α_T 1.1/fb search for supersymmetry at the LHC


- CMS collaboration
- searched for supersymmetry at the LHC
- Looked for jets and missing energy
- Discriminator against
- SM background was kinematic α_T variable
- Number of observed events was in statistical agreement with the SM
- Resulting in a 95% exclusion contour on the CMSSM's $(m_0, m_{1/2})$ plane

Our strategy:

■ Simulate

the α_T search at the event level

Calculate the cross section for the production of sparticles and the α_T efficiency with PYTHIA

BayesFits (2011) 68% region 95% region 600 500 400 Likelihood from CMS α T 1.1/fb 2000 1500 m_0 (GeV)

Our strategy:

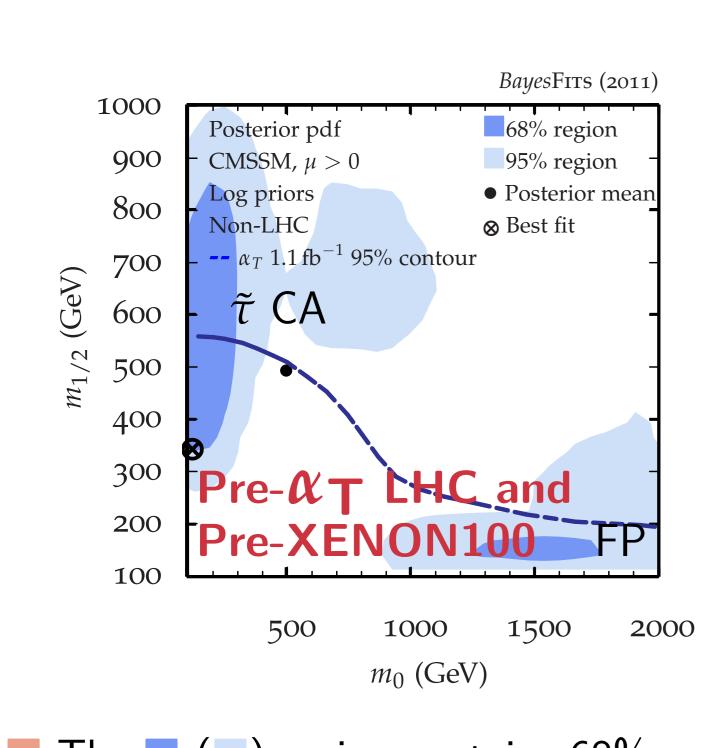
- Find number of supersymmetric events on the whole $(m_0,$ $m_{1/2}$) plane with $s = \epsilon \times \sigma \times \int L$
- Calculate the likelihood at each point on the whole $(m_0, m_{1/2})$ plane — our likelihood map — with Poisson: $\mathcal{L} = e^{-s+b} (s+b)^o / o!$
- Calculate our 95% exclusion

contour with the PL method with $\Delta \chi^2 = 5.99$

Result:

- **Excellent agreement** between our 95% contour (edge of region) and the official CMS α_T 95% contour (- - - line)
- Validates our likelihood map and methodology

XENON100 direct detection


- **XENON100** released a 90% exclusion contour on the $(m_{\chi}, \sigma_{p}^{SI})$ plane from the null result of its direct detection experiment
- We smooth this contour with a Gaussian describing the significant theoretical uncertainties in the $\sigma_p^{\rm SI}$ calculation

Non-LHC constraints on supersymmetry

The significant Non-LHC constraints on the CMSSM are:

- WMAP7 constraint on the relic density of the neutralino, $\Omega_{\chi}h^2$
- LEP and Tevatron limits on sparticle masses and $m_h > 114.4\,\mathrm{GeV}$
- Loop contributions to Δa_{μ} , $b o s \gamma$ and $B_s o \mu^+ \mu^-$

Results — 68% and 95% Bayesian credible regions for CMSSM with likelihood from Non-LHC, XENON100 and $lpha_{oldsymbol{T}}$

- The () region contains 68% (95%) of the posterior
- Log priors for m_0 and $m_{1/2}$
- BayesFits (2011) 68% region Posterior pdf 95% region Posterior mean Non-LHC + α_T + Xenon \otimes Best fit a 1.1 fb⁻¹ 95% contour $\tilde{\tau}$ CA 600 $m_{1/2}$ 400 500 1500 2000 1000 m_0 (GeV)
- is the posterior mean
- ⊗ is the best-fit point

Pre- α_T and pre-XENON100

- Two modes on the CMSSM's $(m_0, m_{1/2})$ plane the stau co-annihilation region (at $\tilde{\tau}$ CA) and the focus point region (at FP)
- \blacksquare Credible regions (\blacksquare and \blacksquare) include low-mass regions below the CMS α_T 95% contour (- - - line)

Post- α_T and post-XENON100

- Stau co-annihilation region (at $\tilde{\tau}$ CA) is severed by the α_T likelihood
- Focus point region (at FP) is only present at 95%
- $\blacksquare \alpha_T$ experiment takes a deep bite into the low-mass region of the CMSSM's $(m_0, m_{1/2})$ plane that was favoured by previous experiments
- and pushes the best-fit point (\otimes) to larger values of $m_{1/2}$