Bayesian Implications of Current LHC Limits for the Constrained MSSM

Andrew Fowlie

University of Sheffield *a.fowlie@sheffield.ac.uk*

Young Theorists' Forum

Table of Contents

1 Supersymmetry and the CMSSM

- 2 The Non-LHC likelihoods
- 3 The CMS α_T LHC likelihood
- 4 Global fit of CMSSM

Supersymmetry

Cartoon of supersymmetry, from SUSY DESY

Supersymmetry

- A symmetry between fermions and bosons
- Postulates the existence of a "mirror image" of the Standard Model
- The superparticles have not been seen, so must be massive
- and supersymmetry must be spontaneously broken!
- Protects the mass of the Higgs boson, and solves the "fine-tuning" problem

The CMSSM

The Constrained Minimal Supersymmetric Standard Model

- Supersymmetry is very economical
- But a phenomenological parameterisation of supersymmetry *breaking* introduces ≈100 free parameters
- That's too many to work with!
- We use the CMSSM, which has only four free parameters
- Soft-breaking scalar masses, gaugino masses and trilinears are degenerate the the GUT scale
- CMSSM: m_0 , $m_{1/2}$, A_0 and $\tan \beta$

Comparing theory with experiments

- The CMSSM has four free parameters
- Does it agrees with all experiments, including the CMS *α*_T search?
- We use SuperBayeS computer program, to scan the CMSSM's parameter space and find regions that agree with experiments

SuperBayeS includes the nested sampling Monte Carlo algorithm

We use Bayesian statistics

Frequentist versus Bayesian

- We use Bayesian statistics; we consider probability of theory given data
- A frequentist statistician, however, would consider probability of data given theory
- Frequentist *versus* Bayesian is a long-running argument...

 $p(m_0, m_{1/2}, A_0, \tan \beta | d) \propto \mathcal{L}(m_0, \ldots) \times \pi(m_0, \ldots)$

 We must construct likelihood functions for the constraints on supersymmetry

The Non-LHC likelihoods

Non-LHC experiments

The significant Non-LHC constraints on the CMSSM are:

- WMAP7 constraint on the relic density of the neutralino, $\Omega_{\chi}h^2$
- LEP and Tevatron limits on sparticle masses and *m_h* > 114.4 GeV
- Loop contributions to Δa_{μ} , $b \to s \gamma$ and $B_s \to \mu^+ \mu^-$

The likelihoods for these constraints are Gaussians (central value) or half-Gaussians (upper or lower limit)

$$\mathcal{L} = e^{-\frac{(\mu-x)^2}{2\sigma^2}}$$

The total likelihood is a product of the individual likelihoods

Constraints on the CMSSM

Experimental data

Measurement	Mean	Exp. Error	The. Error	Likelihood Distribution
смs α_T 1.1/fb analy	sis			
α _T	See text	See text	0	Poisson
XENON100				
$\sigma_p^{SI}(m_\chi)$	$< f(m_{\chi})$ — see text	0	1000%	Upper limit — Error Function
Non-LHC				
$\Omega_{\chi}h^2$	0.1120	0.0056	10%	Gaussian
$\sin^2 \theta_{\rm eff}$	0.231160	0.00013	$15.0 imes 10^{-5}$	Gaussian
MW	80.399	0.023	0.015	Gaussian
$\delta(g-2)^{SUSY}_{\mu} \times 10^{10}$	30.5	8.6	1	Gaussian
$\mathcal{BR}(\bar{B} ightarrow X_s \gamma) imes 10^4$	3.6	0.23	0.21	Gaussian
$\mathcal{BR}(B_u \to \tau \nu) \times 10^4$	1.66	0.66	0.38	Gaussian
ΔM_{B_c}	17.77	0.12	2.4	Gaussian
$\mathcal{BR}\left(B_s \to \mu^+\mu^-\right)$	$< 1.5 imes 10^{-8}$	0	14%	Upper limit — Error Function
Nuisance				
$1/\alpha_{\rm em}(M_Z)^{\overline{\rm MS}}$	127.916	0.015	0	Gaussian
m ^{POLE}	172.9	1.1	0	Gaussian
$m_b(m_b)^{\overline{MS}}$	4.19	0.12	0	Gaussian
$\alpha_s(M_Z)^{\overline{MS}}$	0.1184	0.0006	0	Gaussian
LEP — 95% Limits				
m _h	> 114.4	0	3	Lower limit - Error Function
$\zeta_{l_{\mu}}^{2}$	$\langle f(m_h)$	0	0	Upper limit - Step Function
m_{χ}	> 50	0	5%	Lower limit - Error Function

The CMS α_T LHC likelihood

The CMS detector

Exploded view of the CMS detector, from *cdsweb.cern.ch*

Compact Muon Solenoid

- Observe the results of the collisions with a detector
- CMS is a "general purpose" detector
- Sensitive to all particles and decay signatures
 - Discriminate between "interesting" and background events with off-line cuts

The CMS α_T search for supersymmetry

- CMS looked for supersymmetry in its 2011 data, by looking for "jets" and missing transverse energy
- Discriminator against background was its $\alpha_T > 0.55$ cut
- No significant excess over the Standard Model background

The CMS α_T search for supersymmetry

From CMS Public Web

- = Expected SM QCD background
- = Expected SUSY signal
- = Excluded by $\alpha_T > 0.55$ mostly QCD background
- = The observed data — close to total expected SM background

Exclusion in CMSSM from the CMS α_T

Exclusion, from CMS Public Web

- Supersymmetry particles were not seen
- So low-mass region of the CMSSM below the blue dotted line (- - -) is excluded at 95%

Simulating α_T likelihood

- Wanted to know the likelihood at each point on the $(m_0, m_{1/2})$ plane, not just the 95% exclusion contour
- Likelihood of observing *o* events, given that we expected *s* supersymmetry events and *b* Standard Model background events is given by a Poisson

$$\mathcal{L} = \frac{e^{-s+b} \left(s+b\right)^o}{o!}$$

- We follow CMS treatment bin events into eight *H*_T bins
- Simulated the selection efficiency and calculated the cross section to LO with PYTHIA

$$s = \epsilon \times \sigma \times L$$

Validating our α_T likelihood

- We calculated our likelihood map on the (m₀, m_{1/2}) plane, and our 95% contour with the PL method with Δχ² = 5.99
- Excellent agreement between our 95% contour
 and the official CMS 95% contour (---)
- Fixed $\tan \beta = 10$ and $A_0 = 0$ but checked that likelihood was independent first

My result, from forthcoming publication

Results — Global fit of CMSSM

Results — CMSSM global fit pre-LHC

- Posterior probability map on the CMSSM's (m₀, m_{1/2}) plane
- Consider Non-LHC experiments only
- Stau co-annihilation region and focus point region
- 95% region = ■, 68% region = ■

From arXiv:1111.6098v1 [hep-ph]

Results — CMSSM global fit post-LHC

- Posterior probability map on the CMSSM's (m₀, m_{1/2}) plane
- Consider all experiments, including the latest LHC results
- Stau co-annihlation region severed
- 95% region = ■, 68% region = ■

From arXiv:1111.6098v1 [hep-ph]

Comparing pre- and post-LHC

Pre-LHC

Post-LHC

Bibliography I

A. Fowlie, L. Roszkowski,

Reconstructing ATLAS SU3 in the CMSSM and relaxed phenomenological supersymmetry models. arXiv:1106.5117 [hep-ph]

A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y-L Sming Tsai Bayesian Implications of 2011 LHC and XENON100 Searches for the Constrained MSSM arXiv:1111.6098v1 [hep-ph]